1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-13 23:12:28 +00:00

Update models.py

This commit is contained in:
Carlos A. Iglesias 2017-01-19 15:44:40 +01:00 committed by GitHub
parent b8c4204f5c
commit b6257e2a91

View File

@ -338,11 +338,11 @@ class BigMarketModel(BaseBehaviour):
self.type = "" self.type = ""
self.number_of_enterprises = len(settings.enterprises) self.number_of_enterprises = len(settings.enterprises)
if self.id < self.number_of_enterprises: #Empresas if self.id < self.number_of_enterprises: #Enterprises
self.state['id']=self.id self.state['id']=self.id
self.type="Enterprise" self.type="Enterprise"
self.tweet_probability = settings.tweet_probability_enterprises[self.id] self.tweet_probability = settings.tweet_probability_enterprises[self.id]
else: #Usuarios normales else: #normal users
self.state['id']=self.number_of_enterprises self.state['id']=self.number_of_enterprises
self.type="User" self.type="User"
self.tweet_probability = settings.tweet_probability_users self.tweet_probability = settings.tweet_probability_users
@ -352,7 +352,7 @@ class BigMarketModel(BaseBehaviour):
def step(self, now): def step(self, now):
if(self.id < self.number_of_enterprises): # Empresa if(self.id < self.number_of_enterprises): # Ennterprise
self.enterpriseBehaviour() self.enterpriseBehaviour()
else: # Usuario else: # Usuario
self.userBehaviour() self.userBehaviour()
@ -367,9 +367,9 @@ class BigMarketModel(BaseBehaviour):
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodes neighbour users aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodes neighbour users
for x in aware_neighbors: for x in aware_neighbors:
if random.uniform(0,10) < 5: if random.uniform(0,10) < 5:
x.sentiment_about[self.id] += 0.1 #Aumenta para empresa x.sentiment_about[self.id] += 0.1 #Increments for enterprise
else: else:
x.sentiment_about[self.id] -= 0.1 #Reduce para empresa x.sentiment_about[self.id] -= 0.1 #Decrements for enterprise
# Establecemos limites # Establecemos limites
if x.sentiment_about[self.id] > 1: if x.sentiment_about[self.id] > 1:
@ -382,13 +382,13 @@ class BigMarketModel(BaseBehaviour):
def userBehaviour(self): def userBehaviour(self):
if random.random() < self.tweet_probability: #Twittea if random.random() < self.tweet_probability: #Tweets
if random.random() < self.tweet_relevant_probability: #Twittea algo relevante if random.random() < self.tweet_relevant_probability: #Tweets something relevant
#Probabilidad de tweet para cada empresa #Tweet probability per enterprise
for i in range(self.number_of_enterprises): for i in range(self.number_of_enterprises):
random_num = random.random() random_num = random.random()
if random_num < self.tweet_probability_about[i]: if random_num < self.tweet_probability_about[i]:
#Se ha cumplido la condicion, evaluo los sentimientos hacia esa empresa #The condition is fulfilled, sentiments are evaluated towards that enterprise
if self.sentiment_about[i] < 0: if self.sentiment_about[i] < 0:
#NEGATIVO #NEGATIVO
self.userTweets("negative",i) self.userTweets("negative",i)
@ -572,8 +572,7 @@ class IndependentCascadeModel(BaseBehaviour):
if self.state['id'] == 0: if self.state['id'] == 0:
self.state['id'] = 1 self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1 sentimentCorrelationNodeArray[self.id][self.env.now]=1
self.time_awareness = self.env.now #Para saber cuando se han contagiado self.time_awareness = self.env.now #To know when they have been infected
else: else:
pass pass