mirror of
https://github.com/gsi-upm/soil
synced 2024-11-13 23:12:28 +00:00
First simple testing
This commit is contained in:
parent
0a80da0eef
commit
a8e4e2efe6
17
settings.py
17
settings.py
@ -14,6 +14,11 @@ def init():
|
|||||||
global joy_prob
|
global joy_prob
|
||||||
global sadness_prob
|
global sadness_prob
|
||||||
global disgust_prob
|
global disgust_prob
|
||||||
|
global tweet_probability_users
|
||||||
|
global tweet_relevant_probability
|
||||||
|
global tweet_probability_about
|
||||||
|
global sentiment_about
|
||||||
|
global tweet_probability_enterprises
|
||||||
|
|
||||||
network_type=1
|
network_type=1
|
||||||
number_of_nodes=200
|
number_of_nodes=200
|
||||||
@ -29,9 +34,19 @@ def init():
|
|||||||
innovation_prob=0.01
|
innovation_prob=0.01
|
||||||
imitation_prob=0.01
|
imitation_prob=0.01
|
||||||
|
|
||||||
#SentimentCorrelation model
|
#Sentiment Correlation model
|
||||||
outside_effects_prob = 0.2
|
outside_effects_prob = 0.2
|
||||||
anger_prob = 0.08
|
anger_prob = 0.08
|
||||||
joy_prob = 0.05
|
joy_prob = 0.05
|
||||||
sadness_prob = 0.02
|
sadness_prob = 0.02
|
||||||
disgust_prob = 0.02
|
disgust_prob = 0.02
|
||||||
|
|
||||||
|
#Big Market model
|
||||||
|
##Users
|
||||||
|
tweet_probability_users = 0.44
|
||||||
|
tweet_relevant_probability = 0.25
|
||||||
|
tweet_probability_about = [0.25, 0.25]
|
||||||
|
sentiment_about = [0, 0]
|
||||||
|
##Enterprises
|
||||||
|
tweet_probability_enterprises = [0.5, 0.5]
|
||||||
|
|
||||||
|
98
soil.py
98
soil.py
@ -29,8 +29,10 @@ if settings.network_type == 2:
|
|||||||
|
|
||||||
myList=[] # List just for debugging
|
myList=[] # List just for debugging
|
||||||
networkStatus=[] # This list will contain the status of every node of the network
|
networkStatus=[] # This list will contain the status of every node of the network
|
||||||
|
emotionStatus=[]
|
||||||
for x in range(0, settings.number_of_nodes):
|
for x in range(0, settings.number_of_nodes):
|
||||||
networkStatus.append({'id':x})
|
networkStatus.append({'id':x})
|
||||||
|
emotionStatus.append({'id':x})
|
||||||
|
|
||||||
# Initialize agent states. Let's assume everyone is normal.
|
# Initialize agent states. Let's assume everyone is normal.
|
||||||
init_states = [{'id': 0, } for _ in range(settings.number_of_nodes)] # add keys as as necessary, but "id" must always refer to that state category
|
init_states = [{'id': 0, } for _ in range(settings.number_of_nodes)] # add keys as as necessary, but "id" must always refer to that state category
|
||||||
@ -47,66 +49,79 @@ class BigMarketModel(BaseNetworkAgent):
|
|||||||
def __init__(self, environment=None, agent_id=0, state=()):
|
def __init__(self, environment=None, agent_id=0, state=()):
|
||||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
||||||
self.time_awareness = 0
|
self.time_awareness = 0
|
||||||
networkStatus[self.id][self.env.now]=0
|
self.type = ""
|
||||||
|
|
||||||
if self.id == 0: #Empresa 1
|
if self.id == 0: #Empresa 1
|
||||||
self.state['id']=0
|
self.state['id']=0
|
||||||
self.tweet_probability = settings.tweet_probability_1
|
self.type="Enterprise"
|
||||||
|
self.tweet_probability = settings.tweet_probability_enterprises[0]
|
||||||
|
|
||||||
elif self.id == 1: #Empresa 2
|
elif self.id == 1: #Empresa 2
|
||||||
self.state['id']=1
|
self.state['id']=1
|
||||||
self.tweet_probability = settings.tweet_probability_2
|
self.type="Enterprise"
|
||||||
|
self.tweet_probability = settings.tweet_probability_enterprises[1]
|
||||||
else: #Usuarios normales
|
else: #Usuarios normales
|
||||||
self.state['id']=2
|
self.state['id']=2
|
||||||
|
self.type="User"
|
||||||
self.tweet_probability = settings.tweet_probability_users
|
self.tweet_probability = settings.tweet_probability_users
|
||||||
self.tweet_relevant_probability = settings.tweet_relevant_probability
|
self.tweet_relevant_probability = settings.tweet_relevant_probability
|
||||||
self.tweet_probability_about = settings.tweet_probability_about #Lista
|
self.tweet_probability_about = settings.tweet_probability_about #Lista
|
||||||
self.sentiment_about = settings.sentiment_about #Lista
|
self.sentiment_about = settings.sentiment_about #Lista
|
||||||
|
|
||||||
|
networkStatus[self.id][self.env.now]=self.state['id']
|
||||||
|
emotionStatus[self.id][self.env.now]=0
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
while True:
|
while True:
|
||||||
|
if(self.id == 0 or self.id == 1):
|
||||||
|
# Empresa
|
||||||
|
print("He entrado a empresa")
|
||||||
|
self.enterpriseBehaviour()
|
||||||
|
|
||||||
##Usuario
|
else:
|
||||||
|
# Usuario
|
||||||
|
print("He entrado a usuario")
|
||||||
|
self.userBehaviour()
|
||||||
|
yield self.env.timeout(settings.timeout)
|
||||||
|
|
||||||
if random.random() < self.tweet_probability: #Twittea
|
|
||||||
|
|
||||||
|
def enterpriseBehaviour(self):
|
||||||
|
|
||||||
|
if random.random()< self.tweet_probability: #Twittea
|
||||||
|
aware_neighbors = self.get_neighboring_agents(state_id=2)
|
||||||
|
for x in aware_neighbors:
|
||||||
|
x.sentiment_about[0] += 0.01 #Aumenta para empresa 0
|
||||||
|
emotionStatus[x.id][self.env.now]=x.sentiment_about[0]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def userBehaviour(self):
|
||||||
|
|
||||||
|
if random.random() < self.tweet_probability: #Twittea
|
||||||
if random.random() < self.tweet_relevant_probability: #Twittea algo relevante
|
if random.random() < self.tweet_relevant_probability: #Twittea algo relevante
|
||||||
#Probabilidad de tweet para cada empresa
|
#Probabilidad de tweet para cada empresa
|
||||||
for i in range(len(self.tweet_probability_about)):
|
for i in range(len(self.tweet_probability_about)):
|
||||||
if random.random() < self.tweet_probability_about[i]:
|
random_num = random.random()
|
||||||
|
if random_num < self.tweet_probability_about[i]:
|
||||||
#Se ha cumplido la condicion, evaluo los sentimientos hacia esa empresa
|
#Se ha cumplido la condicion, evaluo los sentimientos hacia esa empresa
|
||||||
if self.sentiment_about[i] < 0:
|
if self.sentiment_about[i] < 0:
|
||||||
#NEGATIVO
|
#NEGATIVO
|
||||||
|
print("Sentimiento negativo")
|
||||||
elif self.sentiment_about[i] == 0:
|
elif self.sentiment_about[i] == 0:
|
||||||
#NEUTRO
|
#NEUTRO
|
||||||
|
print("Sentimiento neutro")
|
||||||
else:
|
else:
|
||||||
#POSITIVO
|
#POSITIVO
|
||||||
|
print("Sentimiento positivo")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
aware_neighbors_1_time_step=[]
|
|
||||||
#Outside effects
|
|
||||||
if random.random() < settings.innovation_prob:
|
|
||||||
if self.state['id'] == 0:
|
|
||||||
self.state['id'] = 1
|
|
||||||
myList.append(self.id)
|
|
||||||
networkStatus[self.id][self.env.now]=1
|
|
||||||
self.time_awareness = self.env.now #Para saber cuando se han contagiado
|
|
||||||
yield self.env.timeout(settings.timeout)
|
|
||||||
else:
|
|
||||||
yield self.env.timeout(settings.timeout)
|
|
||||||
|
|
||||||
#Imitation effects
|
|
||||||
if self.state['id'] == 0:
|
################################################
|
||||||
aware_neighbors = self.get_neighboring_agents(state_id=1)
|
|
||||||
for x in aware_neighbors:
|
|
||||||
if x.time_awareness == (self.env.now-1):
|
|
||||||
aware_neighbors_1_time_step.append(x)
|
|
||||||
num_neighbors_aware = len(aware_neighbors_1_time_step)
|
|
||||||
if random.random() < (settings.imitation_prob*num_neighbors_aware):
|
|
||||||
myList.append(self.id)
|
|
||||||
self.state['id'] = 1
|
|
||||||
networkStatus[self.id][self.env.now]=1
|
|
||||||
yield self.env.timeout(settings.timeout)
|
|
||||||
else:
|
|
||||||
yield self.env.timeout(settings.timeout)
|
|
||||||
|
|
||||||
class SentimentCorrelationModel(BaseNetworkAgent):
|
class SentimentCorrelationModel(BaseNetworkAgent):
|
||||||
def __init__(self, environment=None, agent_id=0, state=()):
|
def __init__(self, environment=None, agent_id=0, state=()):
|
||||||
@ -320,7 +335,7 @@ class ZombieOutbreak(BaseNetworkAgent):
|
|||||||
# Simulation #
|
# Simulation #
|
||||||
##############
|
##############
|
||||||
|
|
||||||
sim = NetworkSimulation(topology=G, states=init_states, agent_type=SentimentCorrelationModel,
|
sim = NetworkSimulation(topology=G, states=init_states, agent_type=BigMarketModel,
|
||||||
max_time=settings.max_time, num_trials=settings.num_trials, logging_interval=1.0)
|
max_time=settings.max_time, num_trials=settings.num_trials, logging_interval=1.0)
|
||||||
|
|
||||||
|
|
||||||
@ -341,14 +356,21 @@ status_census = [sum([1 for node_id, state in g.items() if state['id'] == 1]) fo
|
|||||||
# Visualization #
|
# Visualization #
|
||||||
#################
|
#################
|
||||||
|
|
||||||
|
for x in range(0, settings.number_of_nodes):
|
||||||
|
emotionStatusAux=[]
|
||||||
|
for tiempo in emotionStatus[x]:
|
||||||
|
if tiempo != 'id':
|
||||||
|
emotionStatusAux.append((emotionStatus[x][tiempo],tiempo,None))
|
||||||
|
G.add_node(x, emotion= emotionStatusAux)
|
||||||
|
|
||||||
#lista = nx.nodes(G)
|
#lista = nx.nodes(G)
|
||||||
#print('Nodos: ' + str(lista))
|
#print('Nodos: ' + str(lista))
|
||||||
for x in range(0, settings.number_of_nodes):
|
# for x in range(0, settings.number_of_nodes):
|
||||||
networkStatusAux=[]
|
# networkStatusAux=[]
|
||||||
for tiempo in networkStatus[x]:
|
# for tiempo in networkStatus[x]:
|
||||||
if tiempo != 'id':
|
# if tiempo != 'id':
|
||||||
networkStatusAux.append((networkStatus[x][tiempo],tiempo,None))
|
# networkStatusAux.append((networkStatus[x][tiempo],tiempo,None))
|
||||||
G.add_node(x, status= networkStatusAux)
|
# G.add_node(x, status= networkStatusAux)
|
||||||
#print(networkStatus)
|
#print(networkStatus)
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user