From 99090b149445e20cec721b00b3ceeea48714a7b1 Mon Sep 17 00:00:00 2001 From: JesusMSM Date: Fri, 18 Dec 2015 13:03:58 +0100 Subject: [PATCH] Enterprise basic logic --- settings.py | 4 ++-- soil.py | 46 ++++++++++++++++++++++++++++++++-------------- 2 files changed, 34 insertions(+), 16 deletions(-) diff --git a/settings.py b/settings.py index d831408..2086555 100644 --- a/settings.py +++ b/settings.py @@ -45,8 +45,8 @@ def init(): ##Users tweet_probability_users = 0.44 tweet_relevant_probability = 0.25 - tweet_probability_about = [0.25, 0.25] - sentiment_about = [0, 0] + tweet_probability_about = [0, 0] + sentiment_about = [0, 0] #Valores por defecto ##Enterprises tweet_probability_enterprises = [0.5, 0.5] diff --git a/soil.py b/soil.py index 2b4e924..b963a2b 100644 --- a/soil.py +++ b/soil.py @@ -7,6 +7,7 @@ import random import numpy as np import networkx as nx import settings +import math settings.init() # Loads all the data from settings @@ -73,14 +74,9 @@ class BigMarketModel(BaseNetworkAgent): def run(self): while True: - if(self.id == 0 or self.id == 1): - # Empresa - print("He entrado a empresa") + if(self.id < 2): # Empresa self.enterpriseBehaviour() - - else: - # Usuario - print("He entrado a usuario") + else: # Usuario self.userBehaviour() yield self.env.timeout(settings.timeout) @@ -89,10 +85,19 @@ class BigMarketModel(BaseNetworkAgent): def enterpriseBehaviour(self): if random.random()< self.tweet_probability: #Twittea - aware_neighbors = self.get_neighboring_agents(state_id=2) + aware_neighbors = self.get_neighboring_agents(state_id=2) #Nodos vecinos usuarios for x in aware_neighbors: - x.sentiment_about[0] += 0.01 #Aumenta para empresa 0 - emotionStatus[x.id][self.env.now]=x.sentiment_about[0] + if random.uniform(0,10) < 5: + x.sentiment_about[self.id] += 0.01 #Aumenta para empresa + else: + x.sentiment_about[self.id] -= 0.01 #Reduce para empresa + # Establecemos limites + if x.sentiment_about[self.id] > 1: + x.sentiment_about[self.id] = 1 + if x.sentiment_about[self.id] < -1: + x.sentiment_about[self.id] = -1 + #Guardamos estado para visualizacion + emotionStatus[x.id][self.env.now]=x.sentiment_about[self.id] @@ -101,6 +106,7 @@ class BigMarketModel(BaseNetworkAgent): if random.random() < self.tweet_probability: #Twittea if random.random() < self.tweet_relevant_probability: #Twittea algo relevante + #Probabilidad de tweet para cada empresa for i in range(len(self.tweet_probability_about)): random_num = random.random() @@ -108,13 +114,23 @@ class BigMarketModel(BaseNetworkAgent): #Se ha cumplido la condicion, evaluo los sentimientos hacia esa empresa if self.sentiment_about[i] < 0: #NEGATIVO - print("Sentimiento negativo") + self.userTweets("negative",i) elif self.sentiment_about[i] == 0: #NEUTRO - print("Sentimiento neutro") + pass else: #POSITIVO - print("Sentimiento positivo") + self.userTweets("positive",i) + + def userTweets(self,sentiment,enterprise): + aware_neighbors = self.get_neighboring_agents(state_id=2) #Nodos vecinos usuarios + for x in aware_neighbors: + if sentiment == "positive": + x.sentiment_about[enterprise] +=0 + elif sentiment == "negative": + x.sentiment_about[enterprise] -=0 + else: + pass @@ -360,7 +376,9 @@ for x in range(0, settings.number_of_nodes): emotionStatusAux=[] for tiempo in emotionStatus[x]: if tiempo != 'id': - emotionStatusAux.append((emotionStatus[x][tiempo],tiempo,None)) + prec = 2 + output = math.floor(emotionStatus[x][tiempo] * (10 ** prec)) / (10 ** prec) #Para tener 2 decimales solo + emotionStatusAux.append((output,tiempo,None)) G.add_node(x, emotion= emotionStatusAux) #lista = nx.nodes(G)