mirror of
https://github.com/gsi-upm/soil
synced 2024-11-14 15:32:29 +00:00
Se genera un JSON global dinamico segun el numero de empresas
This commit is contained in:
parent
745b68776f
commit
8e45fe9044
Binary file not shown.
@ -21,8 +21,8 @@ def init():
|
|||||||
global tweet_probability_enterprises
|
global tweet_probability_enterprises
|
||||||
|
|
||||||
network_type=1
|
network_type=1
|
||||||
number_of_nodes=50
|
number_of_nodes=20
|
||||||
max_time=10000
|
max_time=1000
|
||||||
num_trials=1
|
num_trials=1
|
||||||
timeout=10
|
timeout=10
|
||||||
|
|
||||||
|
Binary file not shown.
95
soil.py
95
soil.py
@ -8,6 +8,7 @@ import numpy as np
|
|||||||
import networkx as nx
|
import networkx as nx
|
||||||
import settings
|
import settings
|
||||||
import math
|
import math
|
||||||
|
import json
|
||||||
|
|
||||||
settings.init() # Loads all the data from settings
|
settings.init() # Loads all the data from settings
|
||||||
|
|
||||||
@ -33,12 +34,20 @@ networkStatus=[] # This list will contain the status of every node of the networ
|
|||||||
emotionStatus=[]
|
emotionStatus=[]
|
||||||
enterprise1Status=[]
|
enterprise1Status=[]
|
||||||
enterprise2Status=[]
|
enterprise2Status=[]
|
||||||
|
allEnterprisesEmotionList = {}
|
||||||
for x in range(0, settings.number_of_nodes):
|
for x in range(0, settings.number_of_nodes):
|
||||||
networkStatus.append({'id':x})
|
networkStatus.append({'id':x})
|
||||||
emotionStatus.append({'id':x})
|
emotionStatus.append({'id':x})
|
||||||
enterprise1Status.append({'id':x})
|
enterprise1Status.append({'id':x})
|
||||||
enterprise2Status.append({'id':x})
|
enterprise2Status.append({'id':x})
|
||||||
|
|
||||||
|
for enterpriseIndex in range(0,len(settings.tweet_probability_about)):
|
||||||
|
allEnterprisesEmotionList['enterprise'+str(enterpriseIndex)] = enterprise1Status
|
||||||
|
# for node in range(0, settings.number_of_nodes):
|
||||||
|
|
||||||
|
# allEnterprisesEmotionList['enterprise'+str(enterpriseIndex)].update({'id':node})
|
||||||
|
|
||||||
|
#print(allEnterprisesEmotionList)
|
||||||
|
|
||||||
# Initialize agent states. Let's assume everyone is normal.
|
# Initialize agent states. Let's assume everyone is normal.
|
||||||
init_states = [{'id': 0, } for _ in range(settings.number_of_nodes)] # add keys as as necessary, but "id" must always refer to that state category
|
init_states = [{'id': 0, } for _ in range(settings.number_of_nodes)] # add keys as as necessary, but "id" must always refer to that state category
|
||||||
@ -53,30 +62,35 @@ init_states = [{'id': 0, } for _ in range(settings.number_of_nodes)] # add keys
|
|||||||
|
|
||||||
class BigMarketModel(BaseNetworkAgent):
|
class BigMarketModel(BaseNetworkAgent):
|
||||||
number_of_enterprises = 0
|
number_of_enterprises = 0
|
||||||
|
|
||||||
def __init__(self, environment=None, agent_id=0, state=()):
|
def __init__(self, environment=None, agent_id=0, state=()):
|
||||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
||||||
self.time_awareness = 0
|
self.time_awareness = 0
|
||||||
self.type = ""
|
self.type = ""
|
||||||
number_of_enterprises = len(settings.tweet_probability_about)
|
self.number_of_enterprises = len(settings.tweet_probability_about)
|
||||||
|
|
||||||
if self.id < number_of_enterprises: #Empresas
|
if self.id < self.number_of_enterprises: #Empresas
|
||||||
self.state['id']=self.id
|
self.state['id']=self.id
|
||||||
self.type="Enterprise"
|
self.type="Enterprise"
|
||||||
self.tweet_probability = settings.tweet_probability_enterprises[self.id]
|
self.tweet_probability = settings.tweet_probability_enterprises[self.id]
|
||||||
else: #Usuarios normales
|
else: #Usuarios normales
|
||||||
self.state['id']=number_of_enterprises
|
self.state['id']=self.number_of_enterprises
|
||||||
self.type="User"
|
self.type="User"
|
||||||
self.tweet_probability = settings.tweet_probability_users
|
self.tweet_probability = settings.tweet_probability_users
|
||||||
self.tweet_relevant_probability = settings.tweet_relevant_probability
|
self.tweet_relevant_probability = settings.tweet_relevant_probability
|
||||||
self.tweet_probability_about = settings.tweet_probability_about #Lista
|
self.tweet_probability_about = settings.tweet_probability_about #Lista
|
||||||
self.sentiment_about = settings.sentiment_about #Lista
|
self.sentiment_about = settings.sentiment_about #Lista
|
||||||
|
#Inicializacion de visualizacion
|
||||||
|
for enterpriseIndex in range(0,len(settings.tweet_probability_about)):
|
||||||
|
allEnterprisesEmotionList['enterprise'+str(enterpriseIndex)][self.id].update({0:self.sentiment_about[enterpriseIndex]})
|
||||||
|
#print(allEnterprisesEmotionList)
|
||||||
|
|
||||||
#networkStatus[self.id][self.env.now]=self.state['id']
|
#networkStatus[self.id][self.env.now]=self.state['id']
|
||||||
#emotionStatus[self.id][self.env.now]=0
|
#emotionStatus[self.id][self.env.now]=0
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
while True:
|
while True:
|
||||||
if(self.id < number_of_enterprises): # Empresa
|
if(self.id < self.number_of_enterprises): # Empresa
|
||||||
self.enterpriseBehaviour()
|
self.enterpriseBehaviour()
|
||||||
else: # Usuario
|
else: # Usuario
|
||||||
self.userBehaviour()
|
self.userBehaviour()
|
||||||
@ -88,7 +102,7 @@ class BigMarketModel(BaseNetworkAgent):
|
|||||||
def enterpriseBehaviour(self):
|
def enterpriseBehaviour(self):
|
||||||
|
|
||||||
if random.random()< self.tweet_probability: #Twittea
|
if random.random()< self.tweet_probability: #Twittea
|
||||||
aware_neighbors = self.get_neighboring_agents(state_id=number_of_enterprises) #Nodos vecinos usuarios
|
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodos vecinos usuarios
|
||||||
for x in aware_neighbors:
|
for x in aware_neighbors:
|
||||||
if random.uniform(0,10) < 5:
|
if random.uniform(0,10) < 5:
|
||||||
x.sentiment_about[self.id] += 0.1 #Aumenta para empresa
|
x.sentiment_about[self.id] += 0.1 #Aumenta para empresa
|
||||||
@ -103,12 +117,23 @@ class BigMarketModel(BaseNetworkAgent):
|
|||||||
|
|
||||||
|
|
||||||
#Visualización
|
#Visualización
|
||||||
#if self.id < number_of_enterprises:
|
enterpriseEmotion=[]
|
||||||
|
if self.id < self.number_of_enterprises:
|
||||||
|
#try:
|
||||||
|
#enterpriseEmotion = allEnterprisesEmotionList[self.id] #Cogemos la lista si ya ha sido creada
|
||||||
|
#print (enterpriseEmotion)
|
||||||
|
#except IndexError: # Si no existe la inicializamos
|
||||||
|
# for y in range(0, settings.number_of_nodes):
|
||||||
|
# enterpriseEmotion.append({'id':y})
|
||||||
|
#enterpriseEmotion[x.id][self.env.now]=x.sentiment_about[self.id]
|
||||||
|
#allEnterprisesEmotionList.insert(self.id,enterpriseEmotion) #Guardamos el valor
|
||||||
|
#enterpriseEmotion[:] = [] #Vaciamos la lista
|
||||||
|
allEnterprisesEmotionList['enterprise'+str(self.id)][x.id].update({self.env.now:x.sentiment_about[self.id]})
|
||||||
|
|
||||||
if self.id == 0:
|
#if self.id == 0:
|
||||||
enterprise1Status[x.id][self.env.now]=x.sentiment_about[self.id]
|
# enterprise1Status[x.id][self.env.now]=x.sentiment_about[self.id]
|
||||||
if self.id == 1:
|
#if self.id == 1:
|
||||||
enterprise2Status[x.id][self.env.now]=x.sentiment_about[self.id]
|
# enterprise2Status[x.id][self.env.now]=x.sentiment_about[self.id]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -151,10 +176,21 @@ class BigMarketModel(BaseNetworkAgent):
|
|||||||
x.sentiment_about[enterprise] = -1
|
x.sentiment_about[enterprise] = -1
|
||||||
|
|
||||||
#Visualización
|
#Visualización
|
||||||
if enterprise == 0:
|
# enterpriseEmotion=[]
|
||||||
enterprise1Status[x.id][self.env.now]=x.sentiment_about[enterprise]
|
# try:
|
||||||
if enterprise == 1:
|
# enterpriseEmotion = allEnterprisesEmotionList[self.id] #Cogemos la lista si ya ha sido creada
|
||||||
enterprise2Status[x.id][self.env.now]=x.sentiment_about[enterprise]
|
# except IndexError: # Si no existe la inicializamos
|
||||||
|
# for y in range(0, settings.number_of_nodes):
|
||||||
|
# enterpriseEmotion.append({'id':y})
|
||||||
|
# enterpriseEmotion[x.id][self.env.now]=x.sentiment_about[enterprise]
|
||||||
|
# allEnterprisesEmotionList.insert(enterprise,enterpriseEmotion) #Guardamos el valor
|
||||||
|
# enterpriseEmotion[:] = [] #Vaciamos la lista
|
||||||
|
#if enterprise == 0:
|
||||||
|
# enterprise1Status[x.id][self.env.now]=x.sentiment_about[enterprise]
|
||||||
|
#if enterprise == 1:
|
||||||
|
# enterprise2Status[x.id][self.env.now]=x.sentiment_about[enterprise]
|
||||||
|
|
||||||
|
allEnterprisesEmotionList['enterprise'+str(enterprise)][x.id].update({self.env.now:x.sentiment_about[enterprise]})
|
||||||
|
|
||||||
|
|
||||||
def checkLimits(sentimentValue):
|
def checkLimits(sentimentValue):
|
||||||
@ -408,24 +444,26 @@ status_census = [sum([1 for node_id, state in g.items() if state['id'] == 1]) fo
|
|||||||
# print (enterprise1Status)
|
# print (enterprise1Status)
|
||||||
# print("Empresa2")
|
# print("Empresa2")
|
||||||
# print (enterprise2Status)
|
# print (enterprise2Status)
|
||||||
|
for y in allEnterprisesEmotionList:
|
||||||
for x in range(0, settings.number_of_nodes):
|
for x in range(0, settings.number_of_nodes):
|
||||||
emotionStatusAux=[]
|
emotionStatusAux=[]
|
||||||
for tiempo in enterprise1Status[x]:
|
enterpriseStatus = allEnterprisesEmotionList[y]
|
||||||
|
for tiempo in enterpriseStatus[x]:
|
||||||
if tiempo != 'id':
|
if tiempo != 'id':
|
||||||
prec = 2
|
prec = 2
|
||||||
output = math.floor(enterprise1Status[x][tiempo] * (10 ** prec)) / (10 ** prec) #Para tener 2 decimales solo
|
output = math.floor(enterpriseStatus[x][tiempo] * (10 ** prec)) / (10 ** prec) #Para tener 2 decimales solo
|
||||||
emotionStatusAux.append((output,tiempo,None))
|
emotionStatusAux.append((output,tiempo,None))
|
||||||
G.add_node(x, enterprise1emotion= emotionStatusAux)
|
keyword = 'enterprise'+str(y)+'Emotion'
|
||||||
|
G.add_node(x, keyword = emotionStatusAux)
|
||||||
|
|
||||||
for x in range(0, settings.number_of_nodes):
|
# for x in range(0, settings.number_of_nodes):
|
||||||
emotionStatusAux2=[]
|
# emotionStatusAux2=[]
|
||||||
for tiempo in enterprise2Status[x]:
|
# for tiempo in enterprise2Status[x]:
|
||||||
if tiempo != 'id':
|
# if tiempo != 'id':
|
||||||
prec = 2
|
# prec = 2
|
||||||
output = math.floor(enterprise2Status[x][tiempo] * (10 ** prec)) / (10 ** prec) #Para tener 2 decimales solo
|
# output = math.floor(enterprise2Status[x][tiempo] * (10 ** prec)) / (10 ** prec) #Para tener 2 decimales solo
|
||||||
emotionStatusAux2.append((output,tiempo,None))
|
# emotionStatusAux2.append((output,tiempo,None))
|
||||||
G.add_node(x, enterprise2emotion= emotionStatusAux2)
|
# G.add_node(x, enterprise2emotion= emotionStatusAux2)
|
||||||
|
|
||||||
print("Done!")
|
print("Done!")
|
||||||
|
|
||||||
@ -439,6 +477,9 @@ print("Done!")
|
|||||||
# G.add_node(x, status= networkStatusAux)
|
# G.add_node(x, status= networkStatusAux)
|
||||||
#print(networkStatus)
|
#print(networkStatus)
|
||||||
|
|
||||||
|
print(allEnterprisesEmotionList)
|
||||||
|
with open('data.txt', 'w') as outfile:
|
||||||
|
json.dump(allEnterprisesEmotionList, outfile)
|
||||||
|
|
||||||
nx.write_gexf(G,"test.gexf", version="1.2draft")
|
nx.write_gexf(G,"test.gexf", version="1.2draft")
|
||||||
plt.plot(status_census)
|
plt.plot(status_census)
|
||||||
|
BIN
status.png
BIN
status.png
Binary file not shown.
Before Width: | Height: | Size: 13 KiB After Width: | Height: | Size: 13 KiB |
Loading…
Reference in New Issue
Block a user