1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-22 11:12:29 +00:00

Parallelism and granular exporting options

* Graphs are not saved by default (not backwards compatible)
* Modified newsspread examples
* More granular options to save results (exporting to CSV and GEXF are now
optional)
* Updated tutorial to include exporting options
* Removed references from environment to simulation
* Added parallelism to simulations (can be turned off with a flag or argument).
This commit is contained in:
J. Fernando Sánchez 2017-11-01 14:44:46 +01:00
parent a4b32afa2f
commit 7d1c800490
9 changed files with 399 additions and 249 deletions

File diff suppressed because one or more lines are too long

View File

@ -68,7 +68,7 @@ network_agents:
- agent_type: HerdViewer - agent_type: HerdViewer
state: state:
has_tv: true has_tv: true
id: infected id: neutral
weight: 1 weight: 1
- agent_type: HerdViewer - agent_type: HerdViewer
state: state:
@ -95,7 +95,7 @@ network_agents:
- agent_type: HerdViewer - agent_type: HerdViewer
state: state:
has_tv: true has_tv: true
id: infected id: neutral
weight: 1 weight: 1
- agent_type: WiseViewer - agent_type: WiseViewer
state: state:
@ -121,7 +121,7 @@ network_agents:
- agent_type: WiseViewer - agent_type: WiseViewer
state: state:
has_tv: true has_tv: true
id: infected id: neutral
weight: 1 weight: 1
- agent_type: WiseViewer - agent_type: WiseViewer
state: state:

View File

@ -1,5 +1,4 @@
from soil.agents import BaseAgent,FSM, state, default_state from soil.agents import FSM, state, default_state, prob
import random
import logging import logging
@ -10,30 +9,26 @@ class DumbViewer(FSM):
''' '''
defaults = { defaults = {
'prob_neighbor_spread': 0.5, 'prob_neighbor_spread': 0.5,
'prob_neighbor_cure': 0.25, 'prob_tv_spread': 0.1,
} }
@default_state @default_state
@state @state
def neutral(self): def neutral(self):
r = random.random() if self['has_tv']:
if self['has_tv'] and r < self.env['prob_tv_spread']: if prob(self.env['prob_tv_spread']):
self.infect() self.set_state(self.infected)
return
@state @state
def infected(self): def infected(self):
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id): for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
prob_infect = self.env['prob_neighbor_spread'] if prob(self.env['prob_neighbor_spread']):
r = random.random()
if r < prob_infect:
self.set_state(self.infected.id)
neighbor.infect() neighbor.infect()
return
def infect(self): def infect(self):
self.set_state(self.infected) self.set_state(self.infected)
class HerdViewer(DumbViewer): class HerdViewer(DumbViewer):
''' '''
A viewer whose probability of infection depends on the state of its neighbors. A viewer whose probability of infection depends on the state of its neighbors.
@ -46,34 +41,41 @@ class HerdViewer(DumbViewer):
total = self.count_neighboring_agents() total = self.count_neighboring_agents()
prob_infect = self.env['prob_neighbor_spread'] * infected/total prob_infect = self.env['prob_neighbor_spread'] * infected/total
self.debug('prob_infect', prob_infect) self.debug('prob_infect', prob_infect)
r = random.random() if prob(prob_infect):
if r < prob_infect:
self.set_state(self.infected.id) self.set_state(self.infected.id)
class WiseViewer(HerdViewer): class WiseViewer(HerdViewer):
''' '''
A viewer that can change its mind. A viewer that can change its mind.
''' '''
defaults = {
'prob_neighbor_spread': 0.5,
'prob_neighbor_cure': 0.25,
'prob_tv_spread': 0.1,
}
@state @state
def cured(self): def cured(self):
prob_cure = self.env['prob_neighbor_cure'] prob_cure = self.env['prob_neighbor_cure']
for neighbor in self.get_neighboring_agents(state_id=self.infected.id): for neighbor in self.get_neighboring_agents(state_id=self.infected.id):
r = random.random() if prob(prob_cure):
if r < prob_cure:
try: try:
neighbor.cure() neighbor.cure()
except AttributeError: except AttributeError:
self.debug('Viewer {} cannot be cured'.format(neighbor.id)) self.debug('Viewer {} cannot be cured'.format(neighbor.id))
return
def cure(self): def cure(self):
self.set_state(self.cured.id) self.set_state(self.cured.id)
@state @state
def infected(self): def infected(self):
prob_cure = self.env['prob_neighbor_cure'] cured = max(self.count_neighboring_agents(self.cured.id),
r = random.random() 1.0)
if r < prob_cure: infected = max(self.count_neighboring_agents(self.infected.id),
self.cure() 1.0)
return prob_cure = self.env['prob_neighbor_cure'] * (cured/infected)
return super().infected() if prob(prob_cure):
return self.cure()
return self.set_state(super().infected)

View File

@ -35,8 +35,14 @@ def main():
help='Do not store the results of the simulation.') help='Do not store the results of the simulation.')
parser.add_argument('--pdb', action='store_true', parser.add_argument('--pdb', action='store_true',
help='Use a pdb console in case of exception.') help='Use a pdb console in case of exception.')
parser.add_argument('--output', '-o', type=str, parser.add_argument('--graph', '-g', action='store_true',
help='Dump GEXF graph. Defaults to false.')
parser.add_argument('--csv', action='store_true',
help='Dump history in CSV format. Defaults to false.')
parser.add_argument('--output', '-o', type=str, default="soil_output",
help='folder to write results to. It defaults to the current directory.') help='folder to write results to. It defaults to the current directory.')
parser.add_argument('--synchronous', action='store_true',
help='Run trials serially and synchronously instead of in parallel. Defaults to false.')
args = parser.parse_args() args = parser.parse_args()
@ -47,7 +53,17 @@ def main():
logging.info('Loading config file: {}'.format(args.file, args.output)) logging.info('Loading config file: {}'.format(args.file, args.output))
try: try:
simulation.run_from_config(args.file, dump=(not args.dry_run), results_dir=args.output) dump = []
if not args.dry_run:
if args.csv:
dump.append('csv')
if args.graph:
dump.append('gexf')
simulation.run_from_config(args.file,
dry_run=args.dry_run,
dump=dump,
parallel=(not args.synchronous),
results_dir=args.output)
except Exception as ex: except Exception as ex:
if args.pdb: if args.pdb:
pdb.post_mortem() pdb.post_mortem()

View File

@ -15,4 +15,4 @@ class DrawingAgent(BaseAgent):
# Outside effects # Outside effects
f = plt.figure() f = plt.figure()
nx.draw(self.env.G, node_size=10, width=0.2, pos=nx.spring_layout(self.env.G, scale=100), ax=f.add_subplot(111)) nx.draw(self.env.G, node_size=10, width=0.2, pos=nx.spring_layout(self.env.G, scale=100), ax=f.add_subplot(111))
f.savefig(os.path.join(self.env.sim().dir_path, "graph-"+str(self.env.now)+".png")) f.savefig(os.path.join(self.env.get_path(), "graph-"+str(self.env.now)+".png"))

View File

@ -12,9 +12,9 @@ from copy import deepcopy
from functools import partial from functools import partial
import json import json
from functools import wraps from functools import wraps
from .. import utils
agent_types = {} agent_types = {}
@ -41,7 +41,7 @@ class BaseAgent(nxsim.BaseAgent, metaclass=MetaAgent):
super().__init__(**kwargs) super().__init__(**kwargs)
if not hasattr(self, 'level'): if not hasattr(self, 'level'):
self.level = logging.DEBUG self.level = logging.DEBUG
self.logger = logging.getLogger('Agent-{}'.format(self.id)) self.logger = logging.getLogger('{}-Agent-{}'.format(self.env.name, self.id))
self.logger.setLevel(self.level) self.logger.setLevel(self.level)
@ -140,20 +140,24 @@ class BaseAgent(nxsim.BaseAgent, metaclass=MetaAgent):
def state(func): def state(func):
'''
A state function should return either a state id, or a tuple (state_id, when)
The default value for state_id is the current state id.
The default value for when is the interval defined in the nevironment.
'''
@wraps(func) @wraps(func)
def func_wrapper(self): def func_wrapper(self):
when = None
next_state = func(self) next_state = func(self)
when = None
if next_state is None:
return when
try: try:
next_state, when = next_state next_state, when = next_state
except TypeError: except (ValueError, TypeError):
pass pass
if next_state: if next_state:
try: self.set_state(next_state)
self.state['id'] = next_state.id
except AttributeError:
raise ValueError('State id %s is not valid.' % next_state)
return when return when
func_wrapper.id = func.__name__ func_wrapper.id = func.__name__
@ -212,6 +216,116 @@ class FSM(BaseAgent, metaclass=MetaFSM):
if state not in self.states: if state not in self.states:
raise ValueError('{} is not a valid state'.format(state)) raise ValueError('{} is not a valid state'.format(state))
self.state['id'] = state self.state['id'] = state
return state
def prob(prob=1):
'''
A true/False uniform distribution with a given probability.
To be used like this:
.. code-block:: python
if prob(0.3):
do_something()
'''
r = random.random()
return r < prob
def calculate_distribution(network_agents=None,
agent_type=None):
'''
Calculate the threshold values (thresholds for a uniform distribution)
of an agent distribution given the weights of each agent type.
The input has this form: ::
[
{'agent_type': 'agent_type_1',
'weight': 0.2,
'state': {
'id': 0
}
},
{'agent_type': 'agent_type_2',
'weight': 0.8,
'state': {
'id': 1
}
}
]
In this example, 20% of the nodes will be marked as type
'agent_type_1'.
'''
if network_agents:
network_agents = deepcopy(network_agents)
elif agent_type:
network_agents = [{'agent_type': agent_type}]
else:
return []
# Calculate the thresholds
total = sum(x.get('weight', 1) for x in network_agents)
acc = 0
for v in network_agents:
upper = acc + (v.get('weight', 1)/total)
v['threshold'] = [acc, upper]
acc = upper
return network_agents
def _serialize_distribution(network_agents):
d = _convert_agent_types(network_agents,
to_string=True)
'''
When serializing an agent distribution, remove the thresholds, in order
to avoid cluttering the YAML definition file.
'''
for v in d:
if 'threshold' in v:
del v['threshold']
return d
def _validate_states(states, topology):
'''Validate states to avoid ignoring states during initialization'''
states = states or []
if isinstance(states, dict):
for x in states:
assert x in topology.node
else:
assert len(states) <= len(topology)
return states
def _convert_agent_types(ind, to_string=False):
'''Convenience method to allow specifying agents by class or class name.'''
d = deepcopy(ind)
for v in d:
agent_type = v['agent_type']
if to_string and not isinstance(agent_type, str):
v['agent_type'] = str(agent_type.__name__)
elif not to_string and isinstance(agent_type, str):
v['agent_type'] = agent_types[agent_type]
return d
def _agent_from_distribution(distribution, value=-1):
"""Used in the initialization of agents given an agent distribution."""
if value < 0:
value = random.random()
for d in distribution:
threshold = d['threshold']
if value >= threshold[0] and value < threshold[1]:
state = {}
if 'state' in d:
state = deepcopy(d['state'])
return d['agent_type'], state
raise Exception('Distribution for value {} not found in: {}'.format(value, distribution))
from .BassModel import * from .BassModel import *

View File

@ -1,16 +1,16 @@
import os import os
import sqlite3 import sqlite3
import time import time
import weakref
import csv import csv
import random import random
import simpy import simpy
from copy import deepcopy from copy import deepcopy
from networkx.readwrite import json_graph
import networkx as nx import networkx as nx
import nxsim import nxsim
from . import utils from . import utils, agents
class SoilEnvironment(nxsim.NetworkEnvironment): class SoilEnvironment(nxsim.NetworkEnvironment):
@ -22,21 +22,18 @@ class SoilEnvironment(nxsim.NetworkEnvironment):
default_state=None, default_state=None,
interval=1, interval=1,
seed=None, seed=None,
dump=False, dry_run=False,
simulation=None, dir_path=None,
*args, **kwargs): *args, **kwargs):
self.name = name or 'UnnamedEnvironment' self.name = name or 'UnnamedEnvironment'
if isinstance(states, list): if isinstance(states, list):
states = dict(enumerate(states)) states = dict(enumerate(states))
self.states = deepcopy(states) if states else {} self.states = deepcopy(states) if states else {}
self.default_state = deepcopy(default_state) or {} self.default_state = deepcopy(default_state) or {}
self.sim = weakref.ref(simulation)
if 'topology' not in kwargs and simulation:
kwargs['topology'] = self.sim().topology.copy()
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
self._env_agents = {} self._env_agents = {}
self.dry_run = dry_run
self.interval = interval self.interval = interval
self.dump = dump
# Add environment agents first, so their events get # Add environment agents first, so their events get
# executed before network agents # executed before network agents
self['SEED'] = seed or time.time() self['SEED'] = seed or time.time()
@ -44,10 +41,11 @@ class SoilEnvironment(nxsim.NetworkEnvironment):
self.process(self.save_state()) self.process(self.save_state())
self.environment_agents = environment_agents or [] self.environment_agents = environment_agents or []
self.network_agents = network_agents or [] self.network_agents = network_agents or []
if self.dump: self.dir_path = dir_path
self._db_path = os.path.join(self.get_path(), '{}.db.sqlite'.format(self.name)) if self.dry_run:
else:
self._db_path = ":memory:" self._db_path = ":memory:"
else:
self._db_path = os.path.join(self.get_path(), '{}.db.sqlite'.format(self.name))
self.create_db(self._db_path) self.create_db(self._db_path)
def create_db(self, db_path=None): def create_db(self, db_path=None):
@ -93,7 +91,7 @@ class SoilEnvironment(nxsim.NetworkEnvironment):
for ix in self.G.nodes(): for ix in self.G.nodes():
i = ix i = ix
node = self.G.node[i] node = self.G.node[i]
agent, state = utils.agent_from_distribution(network_agents) agent, state = agents._agent_from_distribution(network_agents)
self.set_agent(i, agent_type=agent, state=state) self.set_agent(i, agent_type=agent, state=state)
def set_agent(self, agent_id, agent_type, state=None): def set_agent(self, agent_id, agent_type, state=None):
@ -200,7 +198,7 @@ class SoilEnvironment(nxsim.NetworkEnvironment):
return self[key] if key in self else default return self[key] if key in self else default
def get_path(self, dir_path=None): def get_path(self, dir_path=None):
dir_path = dir_path or self.sim().dir_path dir_path = dir_path or self.dir_path
if not os.path.exists(dir_path): if not os.path.exists(dir_path):
os.makedirs(dir_path) os.makedirs(dir_path)
return dir_path return dir_path
@ -227,6 +225,19 @@ class SoilEnvironment(nxsim.NetworkEnvironment):
self.name+".gexf") self.name+".gexf")
nx.write_gexf(G, graph_path, version="1.2draft") nx.write_gexf(G, graph_path, version="1.2draft")
def dump(self, dir_path=None, formats=None):
if not formats:
return
functions = {
'csv': self.dump_csv,
'gexf': self.dump_gexf
}
for f in formats:
if f in functions:
functions[f](dir_path)
else:
raise ValueError('Unknown format: {}'.format(f))
def state_to_tuples(self, now=None): def state_to_tuples(self, now=None):
if now is None: if now is None:
now = self.now now = self.now
@ -289,3 +300,23 @@ class SoilEnvironment(nxsim.NetworkEnvironment):
G.add_node(agent.id, **attributes) G.add_node(agent.id, **attributes)
return G return G
def __getstate__(self):
state = self.__dict__.copy()
state['G'] = json_graph.node_link_data(self.G)
state['network_agents'] = agents.serialize_distribution(self.network_agents)
state['environment_agents'] = agents._convert_agent_types(self.environment_agents,
to_string=True)
del state['_queue']
import inspect
for k, v in state.items():
if inspect.isgeneratorfunction(v):
print(k, v, type(v))
return state
def __setstate__(self, state):
self.__dict__ = state
self.G = json_graph.node_link_graph(state['G'])
self.network_agents = self.calculate_distribution(self._convert_agent_types(self.network_agents))
self.environment_agents = self._convert_agent_types(self.environment_agents)
return state

View File

@ -5,14 +5,14 @@ import sys
import yaml import yaml
import networkx as nx import networkx as nx
from networkx.readwrite import json_graph from networkx.readwrite import json_graph
from multiprocessing import Pool
from copy import deepcopy from functools import partial
import pickle import pickle
from nxsim import NetworkSimulation from nxsim import NetworkSimulation
from . import agents, utils, environment, basestring from . import utils, environment, basestring, agents
from .utils import logger from .utils import logger
@ -46,7 +46,7 @@ class SoilSimulation(NetworkSimulation):
""" """
def __init__(self, name=None, topology=None, network_params=None, def __init__(self, name=None, topology=None, network_params=None,
network_agents=None, agent_type=None, states=None, network_agents=None, agent_type=None, states=None,
default_state=None, interval=1, dump=False, default_state=None, interval=1, dump=None, dry_run=False,
dir_path=None, num_trials=1, max_time=100, dir_path=None, num_trials=1, max_time=100,
agent_module=None, load_module=None, seed=None, agent_module=None, load_module=None, seed=None,
environment_agents=None, environment_params=None): environment_agents=None, environment_params=None):
@ -57,7 +57,6 @@ class SoilSimulation(NetworkSimulation):
elif isinstance(topology, basestring) or isinstance(topology, dict): elif isinstance(topology, basestring) or isinstance(topology, dict):
topology = json_graph.node_link_graph(topology) topology = json_graph.node_link_graph(topology)
self.load_module = load_module self.load_module = load_module
self.topology = nx.Graph(topology) self.topology = nx.Graph(topology)
self.network_params = network_params self.network_params = network_params
@ -69,94 +68,64 @@ class SoilSimulation(NetworkSimulation):
self.interval = interval self.interval = interval
self.seed = str(seed) or str(time.time()) self.seed = str(seed) or str(time.time())
self.dump = dump self.dump = dump
self.dry_run = dry_run
self.environment_params = environment_params or {} self.environment_params = environment_params or {}
if load_module: if load_module:
path = sys.path + [self.dir_path] path = sys.path + [self.dir_path, os.getcwd()]
f, fp, desc = imp.find_module(load_module, path) f, fp, desc = imp.find_module(load_module, path)
imp.load_module('soil.agents.custom', f, fp, desc) imp.load_module('soil.agents.custom', f, fp, desc)
environment_agents = environment_agents or [] environment_agents = environment_agents or []
self.environment_agents = self._convert_agent_types(environment_agents) self.environment_agents = agents._convert_agent_types(environment_agents)
distro = self.calculate_distribution(network_agents, distro = agents.calculate_distribution(network_agents,
agent_type) agent_type)
self.network_agents = self._convert_agent_types(distro) self.network_agents = agents._convert_agent_types(distro)
self.states = self.validate_states(states, self.states = agents._validate_states(states,
self.topology) self.topology)
def calculate_distribution(self, def run_simulation(self, *args, **kwargs):
network_agents=None, return self.run(*args, **kwargs)
agent_type=None):
if network_agents:
network_agents = deepcopy(network_agents)
elif agent_type:
network_agents = [{'agent_type': agent_type}]
else:
return []
# Calculate the thresholds def run(self, *args, **kwargs):
total = sum(x.get('weight', 1) for x in network_agents) return list(self.run_simulation_gen(*args, **kwargs))
acc = 0
for v in network_agents:
upper = acc + (v.get('weight', 1)/total)
v['threshold'] = [acc, upper]
acc = upper
return network_agents
def serialize_distribution(self): def run_simulation_gen(self, *args, parallel=False, **kwargs):
d = self._convert_agent_types(self.network_agents, p = Pool()
to_string=True)
for v in d:
if 'threshold' in v:
del v['threshold']
return d
def _convert_agent_types(self, ind, to_string=False):
d = deepcopy(ind)
for v in d:
agent_type = v['agent_type']
if to_string and not isinstance(agent_type, str):
v['agent_type'] = str(agent_type.__name__)
elif not to_string and isinstance(agent_type, str):
v['agent_type'] = agents.agent_types[agent_type]
return d
def validate_states(self, states, topology):
states = states or []
# Validate states to avoid ignoring states during
# initialization
if isinstance(states, dict):
for x in states:
assert x in self.topology.node
else:
assert len(states) <= len(self.topology)
return states
def run_simulation(self):
return self.run()
def run(self):
return list(self.run_simulation_gen())
def run_simulation_gen(self, *args, **kwargs):
with utils.timer('simulation'): with utils.timer('simulation'):
if parallel:
func = partial(self.run_trial, return_env=not parallel)
for i in p.imap_unordered(func, range(self.num_trials)):
yield i
else:
for i in range(self.num_trials): for i in range(self.num_trials):
res = self.run_trial(i) yield self.run_trial(i)
if self.dump: if not self.dry_run:
res.dump_gexf(self.dir_path)
res.dump_csv(self.dir_path)
yield res
if self.dump:
logger.info('Dumping results to {}'.format(self.dir_path)) logger.info('Dumping results to {}'.format(self.dir_path))
self.dump_pickle(self.dir_path) self.dump_pickle(self.dir_path)
self.dump_yaml(self.dir_path) self.dump_yaml(self.dir_path)
else: else:
logger.info('NOT dumping results') logger.info('NOT dumping results')
def run_trial(self, trial_id=0, dump=False, dir_path=None): def get_env(self, trial_id=0, dump=False, dir_path=None):
env_name = '{}_trial_{}'.format(self.name, trial_id)
env = environment.SoilEnvironment(name=env_name,
topology=self.topology.copy(),
seed=self.seed+env_name,
initial_time=0,
dry_run=self.dry_run,
interval=self.interval,
network_agents=self.network_agents,
states=self.states,
default_state=self.default_state,
environment_agents=self.environment_agents,
dir_path=dir_path or self.dir_path,
**self.environment_params)
return env
def run_trial(self, trial_id=0, dump=False, dir_path=None, until=None, return_env=False):
"""Run a single trial of the simulation """Run a single trial of the simulation
Parameters Parameters
@ -164,24 +133,15 @@ class SoilSimulation(NetworkSimulation):
trial_id : int trial_id : int
""" """
# Set-up trial environment and graph # Set-up trial environment and graph
logger.info('Trial: {}'.format(trial_id)) until = until or self.max_time
env_name = '{}_trial_{}'.format(self.name, trial_id) env = self.get_env(trial_id=trial_id, dump=dump, dir_path=dir_path)
env = environment.SoilEnvironment(name=env_name,
topology=self.topology.copy(),
seed=self.seed+env_name,
initial_time=0,
dump=self.dump,
interval=self.interval,
network_agents=self.network_agents,
states=self.states,
default_state=self.default_state,
environment_agents=self.environment_agents,
simulation=self,
**self.environment_params)
# Set up agents on nodes # Set up agents on nodes
logger.info('\tRunning') with utils.timer('Simulation {} trial {}'.format(self.name, trial_id)):
with utils.timer('trial'): env.run(until)
env.run(until=self.max_time) if self.dump and not self.dry_run:
with utils.timer('Dumping simulation {} trial {}'.format(self.name, trial_id)):
env.dump(dir_path, formats=self.dump)
if return_env:
return env return env
def to_dict(self): def to_dict(self):
@ -213,16 +173,16 @@ class SoilSimulation(NetworkSimulation):
def __getstate__(self): def __getstate__(self):
state = self.__dict__.copy() state = self.__dict__.copy()
state['topology'] = json_graph.node_link_data(self.topology) state['topology'] = json_graph.node_link_data(self.topology)
state['network_agents'] = self.serialize_distribution() state['network_agents'] = agents._serialize_distribution(self.network_agents)
state['environment_agents'] = self._convert_agent_types(self.environment_agents, state['environment_agents'] = agents._convert_agent_types(self.environment_agents,
to_string=True) to_string=True)
return state return state
def __setstate__(self, state): def __setstate__(self, state):
self.__dict__ = state self.__dict__ = state
self.topology = json_graph.node_link_graph(state['topology']) self.topology = json_graph.node_link_graph(state['topology'])
self.network_agents = self._convert_agent_types(self.network_agents) self.network_agents = agents.calculate_distribution(agents._convert_agent_types(self.network_agents))
self.environment_agents = self._convert_agent_types(self.environment_agents) self.environment_agents = agents._convert_agent_types(self.environment_agents)
return state return state
@ -235,21 +195,18 @@ def from_config(config, G=None):
return sim return sim
def run_from_config(*configs, dump=True, results_dir=None, timestamp=False): def run_from_config(*configs, results_dir='soil_output', dump=None, timestamp=False, **kwargs):
if not results_dir:
results_dir = 'soil_output'
for config_def in configs: for config_def in configs:
for config, cpath in utils.load_config(config_def): for config, cpath in utils.load_config(config_def):
name = config.get('name', 'unnamed') name = config.get('name', 'unnamed')
logger.info("Using config(s): {name}".format(name=name)) logger.info("Using config(s): {name}".format(name=name))
sim = SoilSimulation(**config)
if timestamp: if timestamp:
sim_folder = '{}_{}'.format(sim.name, sim_folder = '{}_{}'.format(name,
time.strftime("%Y-%m-%d_%H:%M:%S")) time.strftime("%Y-%m-%d_%H:%M:%S"))
else: else:
sim_folder = sim.name sim_folder = name
sim.dir_path = os.path.join(results_dir, sim_folder) dir_path = os.path.join(results_dir, sim_folder)
sim.dump = dump sim = SoilSimulation(dir_path=dir_path, dump=dump, **config)
logger.info('Dumping results to {} : {}'.format(sim.dir_path, dump)) logger.info('Dumping results to {} : {}'.format(sim.dir_path, sim.dump))
results = sim.run_simulation() results = sim.run_simulation(**kwargs)

View File

@ -11,7 +11,7 @@ import networkx as nx
from contextlib import contextmanager from contextlib import contextmanager
logger = logging.getLogger(__name__) logger = logging.getLogger('soil')
logger.setLevel(logging.INFO) logger.setLevel(logging.INFO)
@ -62,6 +62,7 @@ def load_config(config):
@contextmanager @contextmanager
def timer(name='task', pre="", function=logger.info, to_object=None): def timer(name='task', pre="", function=logger.info, to_object=None):
start = time() start = time()
function('{}Starting {} at {}.'.format(pre, name, start))
yield start yield start
end = time() end = time()
function('{}Finished {} in {} seconds'.format(pre, name, str(end-start))) function('{}Finished {} in {} seconds'.format(pre, name, str(end-start)))
@ -70,21 +71,6 @@ def timer(name='task', pre="", function=logger.info, to_object=None):
to_object.end = end to_object.end = end
def agent_from_distribution(distribution, value=-1):
"""Find the agent """
if value < 0:
value = random()
for d in distribution:
threshold = d['threshold']
if value >= threshold[0] and value < threshold[1]:
state = {}
if 'state' in d:
state = deepcopy(d['state'])
return d['agent_type'], state
raise Exception('Distribution for value {} not found in: {}'.format(value, distribution))
def repr(v): def repr(v):
if isinstance(v, bool): if isinstance(v, bool):
v = "true" if v else "" v = "true" if v else ""