mirror of
https://github.com/gsi-upm/soil
synced 2024-11-22 11:12:29 +00:00
WIP: mesa compatibility
This commit is contained in:
parent
e860bdb922
commit
5d7e57675a
21
CHANGELOG.md
21
CHANGELOG.md
@ -3,6 +3,27 @@ All notable changes to this project will be documented in this file.
|
|||||||
|
|
||||||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||||
|
|
||||||
|
## [Unreleased]
|
||||||
|
### Added
|
||||||
|
* [WIP] Integration with MESA
|
||||||
|
* `not_agent_ids` paramter to get sql in history
|
||||||
|
### Changed
|
||||||
|
* `soil.Environment` now also inherits from `mesa.Model`
|
||||||
|
* `soil.Agent` now also inherits from `mesa.Agent`
|
||||||
|
* `soil.time` to replace `simpy` events, delays, duration, etc.
|
||||||
|
### Removed
|
||||||
|
* `simpy` dependency and compatibility. Each agent used to be a simpy generator, but that made debugging and error handling more complex. That has been replaced by a scheduler within the `soil.Environment` class, similar to how `mesa` does it.
|
||||||
|
|
||||||
|
### TODO:
|
||||||
|
* agent_id -> unique_id?
|
||||||
|
* mesa has Agent.model and soil has Agent.env
|
||||||
|
* Environments.agents and mesa.Agent.agents are not the same. env is a property, and it only takes into account network and environment agents. Might rename environment_agents to other_agents or sth like that
|
||||||
|
* soil.History should mimic a mesa.datacollector :/
|
||||||
|
* soil.Simulation *could* mimic a mesa.batchrunner
|
||||||
|
* DONE include scheduler in environment
|
||||||
|
* DONE environment inherits from `mesa.Model`
|
||||||
|
|
||||||
|
|
||||||
## [0.15.2]
|
## [0.15.2]
|
||||||
### Fixed
|
### Fixed
|
||||||
* Pass the right known_modules and parameters to stats discovery in simulation
|
* Pass the right known_modules and parameters to stats discovery in simulation
|
||||||
|
@ -47,12 +47,6 @@ There are three main elements in a soil simulation:
|
|||||||
- The environment. It assigns agents to nodes in the network, and
|
- The environment. It assigns agents to nodes in the network, and
|
||||||
stores the environment parameters (shared state for all agents).
|
stores the environment parameters (shared state for all agents).
|
||||||
|
|
||||||
Soil is based on ``simpy``, which is an event-based network simulation
|
|
||||||
library. Soil provides several abstractions over events to make
|
|
||||||
developing agents easier. This means you can use events (timeouts,
|
|
||||||
delays) in soil, but for the most part we will assume your models will
|
|
||||||
be step-based.
|
|
||||||
|
|
||||||
Modeling behaviour
|
Modeling behaviour
|
||||||
------------------
|
------------------
|
||||||
|
|
||||||
|
21
examples/mesa/mesa.yml
Normal file
21
examples/mesa/mesa.yml
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
---
|
||||||
|
name: mesa_sim
|
||||||
|
group: tests
|
||||||
|
dir_path: "/tmp"
|
||||||
|
num_trials: 3
|
||||||
|
max_time: 100
|
||||||
|
interval: 1
|
||||||
|
seed: '1'
|
||||||
|
network_params:
|
||||||
|
generator: social_wealth.graph_generator
|
||||||
|
n: 5
|
||||||
|
network_agents:
|
||||||
|
- agent_type: social_wealth.SocialMoneyAgent
|
||||||
|
weight: 1
|
||||||
|
environment_class: social_wealth.MoneyEnv
|
||||||
|
environment_params:
|
||||||
|
num_mesa_agents: 5
|
||||||
|
mesa_agent_type: social_wealth.MoneyAgent
|
||||||
|
N: 10
|
||||||
|
width: 50
|
||||||
|
height: 50
|
106
examples/mesa/server.py
Normal file
106
examples/mesa/server.py
Normal file
@ -0,0 +1,106 @@
|
|||||||
|
from mesa.visualization.ModularVisualization import ModularServer
|
||||||
|
from soil.visualization import UserSettableParameter
|
||||||
|
from mesa.visualization.modules import ChartModule, NetworkModule, CanvasGrid
|
||||||
|
from social_wealth import MoneyEnv, graph_generator, SocialMoneyAgent
|
||||||
|
|
||||||
|
|
||||||
|
class MyNetwork(NetworkModule):
|
||||||
|
def render(self, model):
|
||||||
|
return self.portrayal_method(model)
|
||||||
|
|
||||||
|
|
||||||
|
def network_portrayal(env):
|
||||||
|
# The model ensures there is 0 or 1 agent per node
|
||||||
|
|
||||||
|
portrayal = dict()
|
||||||
|
portrayal["nodes"] = [
|
||||||
|
{
|
||||||
|
"id": agent_id,
|
||||||
|
"size": env.get_agent(agent_id).wealth,
|
||||||
|
# "color": "#CC0000" if not agents or agents[0].wealth == 0 else "#007959",
|
||||||
|
"color": "#CC0000",
|
||||||
|
"label": f"{agent_id}: {env.get_agent(agent_id).wealth}",
|
||||||
|
}
|
||||||
|
for (agent_id) in env.G.nodes
|
||||||
|
]
|
||||||
|
# import pdb;pdb.set_trace()
|
||||||
|
|
||||||
|
portrayal["edges"] = [
|
||||||
|
{"id": edge_id, "source": source, "target": target, "color": "#000000"}
|
||||||
|
for edge_id, (source, target) in enumerate(env.G.edges)
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
return portrayal
|
||||||
|
|
||||||
|
|
||||||
|
def gridPortrayal(agent):
|
||||||
|
"""
|
||||||
|
This function is registered with the visualization server to be called
|
||||||
|
each tick to indicate how to draw the agent in its current state.
|
||||||
|
:param agent: the agent in the simulation
|
||||||
|
:return: the portrayal dictionary
|
||||||
|
"""
|
||||||
|
color = max(10, min(agent.wealth*10, 100))
|
||||||
|
return {
|
||||||
|
"Shape": "rect",
|
||||||
|
"w": 1,
|
||||||
|
"h": 1,
|
||||||
|
"Filled": "true",
|
||||||
|
"Layer": 0,
|
||||||
|
"Label": agent.unique_id,
|
||||||
|
"Text": agent.unique_id,
|
||||||
|
"x": agent.pos[0],
|
||||||
|
"y": agent.pos[1],
|
||||||
|
"Color": f"rgba(31, 10, 255, 0.{color})"
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
grid = MyNetwork(network_portrayal, 500, 500, library="sigma")
|
||||||
|
chart = ChartModule(
|
||||||
|
[{"Label": "Gini", "Color": "Black"}], data_collector_name="datacollector"
|
||||||
|
)
|
||||||
|
|
||||||
|
model_params = {
|
||||||
|
"N": UserSettableParameter(
|
||||||
|
"slider",
|
||||||
|
"N",
|
||||||
|
1,
|
||||||
|
1,
|
||||||
|
10,
|
||||||
|
1,
|
||||||
|
description="Choose how many agents to include in the model",
|
||||||
|
),
|
||||||
|
"network_agents": [{"agent_type": SocialMoneyAgent}],
|
||||||
|
"height": UserSettableParameter(
|
||||||
|
"slider",
|
||||||
|
"height",
|
||||||
|
5,
|
||||||
|
5,
|
||||||
|
10,
|
||||||
|
1,
|
||||||
|
description="Grid height",
|
||||||
|
),
|
||||||
|
"width": UserSettableParameter(
|
||||||
|
"slider",
|
||||||
|
"width",
|
||||||
|
5,
|
||||||
|
5,
|
||||||
|
10,
|
||||||
|
1,
|
||||||
|
description="Grid width",
|
||||||
|
),
|
||||||
|
"network_params": {
|
||||||
|
'generator': graph_generator
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
canvas_element = CanvasGrid(gridPortrayal, model_params["width"].value, model_params["height"].value, 500, 500)
|
||||||
|
|
||||||
|
|
||||||
|
server = ModularServer(
|
||||||
|
MoneyEnv, [grid, chart, canvas_element], "Money Model", model_params
|
||||||
|
)
|
||||||
|
server.port = 8521
|
||||||
|
|
||||||
|
server.launch(open_browser=False)
|
134
examples/mesa/social_wealth.py
Normal file
134
examples/mesa/social_wealth.py
Normal file
@ -0,0 +1,134 @@
|
|||||||
|
'''
|
||||||
|
This is an example that adds soil agents and environment in a normal
|
||||||
|
mesa workflow.
|
||||||
|
'''
|
||||||
|
from mesa import Agent as MesaAgent
|
||||||
|
from mesa.space import MultiGrid
|
||||||
|
# from mesa.time import RandomActivation
|
||||||
|
from mesa.datacollection import DataCollector
|
||||||
|
from mesa.batchrunner import BatchRunner
|
||||||
|
|
||||||
|
import networkx as nx
|
||||||
|
|
||||||
|
from soil import NetworkAgent, Environment
|
||||||
|
|
||||||
|
def compute_gini(model):
|
||||||
|
agent_wealths = [agent.wealth for agent in model.agents]
|
||||||
|
x = sorted(agent_wealths)
|
||||||
|
N = len(list(model.agents))
|
||||||
|
B = sum( xi * (N-i) for i,xi in enumerate(x) ) / (N*sum(x))
|
||||||
|
return (1 + (1/N) - 2*B)
|
||||||
|
|
||||||
|
class MoneyAgent(MesaAgent):
|
||||||
|
"""
|
||||||
|
A MESA agent with fixed initial wealth.
|
||||||
|
It will only share wealth with neighbors based on grid proximity
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, unique_id, model):
|
||||||
|
super().__init__(unique_id=unique_id, model=model)
|
||||||
|
self.wealth = 1
|
||||||
|
|
||||||
|
def move(self):
|
||||||
|
possible_steps = self.model.grid.get_neighborhood(
|
||||||
|
self.pos,
|
||||||
|
moore=True,
|
||||||
|
include_center=False)
|
||||||
|
print(self.pos, possible_steps)
|
||||||
|
new_position = self.random.choice(possible_steps)
|
||||||
|
print(self.pos, new_position)
|
||||||
|
self.model.grid.move_agent(self, new_position)
|
||||||
|
|
||||||
|
def give_money(self):
|
||||||
|
cellmates = self.model.grid.get_cell_list_contents([self.pos])
|
||||||
|
if len(cellmates) > 1:
|
||||||
|
other = self.random.choice(cellmates)
|
||||||
|
other.wealth += 1
|
||||||
|
self.wealth -= 1
|
||||||
|
|
||||||
|
def step(self):
|
||||||
|
self.info("Crying wolf", self.pos)
|
||||||
|
self.move()
|
||||||
|
if self.wealth > 0:
|
||||||
|
self.give_money()
|
||||||
|
|
||||||
|
|
||||||
|
class SocialMoneyAgent(NetworkAgent, MoneyAgent):
|
||||||
|
wealth = 1
|
||||||
|
|
||||||
|
def give_money(self):
|
||||||
|
cellmates = set(self.model.grid.get_cell_list_contents([self.pos]))
|
||||||
|
friends = set(self.get_neighboring_agents())
|
||||||
|
self.info("Trying to give money")
|
||||||
|
self.debug("Cellmates: ", cellmates)
|
||||||
|
self.debug("Friends: ", friends)
|
||||||
|
|
||||||
|
nearby_friends = list(cellmates & friends)
|
||||||
|
|
||||||
|
if len(nearby_friends):
|
||||||
|
other = self.random.choice(nearby_friends)
|
||||||
|
other.wealth += 1
|
||||||
|
self.wealth -= 1
|
||||||
|
|
||||||
|
|
||||||
|
class MoneyEnv(Environment):
|
||||||
|
"""A model with some number of agents."""
|
||||||
|
def __init__(self, N, width, height, *args, network_params, **kwargs):
|
||||||
|
self.initialized = True
|
||||||
|
# import pdb;pdb.set_trace()
|
||||||
|
|
||||||
|
network_params['n'] = N
|
||||||
|
super().__init__(*args, network_params=network_params, **kwargs)
|
||||||
|
self.grid = MultiGrid(width, height, False)
|
||||||
|
# self.schedule = RandomActivation(self)
|
||||||
|
self.running = True
|
||||||
|
|
||||||
|
# Create agents
|
||||||
|
for agent in self.agents:
|
||||||
|
self.schedule.add(agent)
|
||||||
|
# a = MoneyAgent(i, self)
|
||||||
|
# self.schedule.add(a)
|
||||||
|
# Add the agent to a random grid cell
|
||||||
|
x = self.random.randrange(self.grid.width)
|
||||||
|
y = self.random.randrange(self.grid.height)
|
||||||
|
self.grid.place_agent(agent, (x, y))
|
||||||
|
|
||||||
|
self.datacollector = DataCollector(
|
||||||
|
model_reporters={"Gini": compute_gini},
|
||||||
|
agent_reporters={"Wealth": "wealth"})
|
||||||
|
|
||||||
|
def step(self):
|
||||||
|
super().step()
|
||||||
|
self.datacollector.collect(self)
|
||||||
|
self.schedule.step()
|
||||||
|
|
||||||
|
def graph_generator(n=5):
|
||||||
|
G = nx.Graph()
|
||||||
|
for ix in range(n):
|
||||||
|
G.add_edge(0, ix)
|
||||||
|
return G
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
|
||||||
|
G = graph_generator()
|
||||||
|
fixed_params = {"topology": G,
|
||||||
|
"width": 10,
|
||||||
|
"network_agents": [{"agent_type": SocialMoneyAgent,
|
||||||
|
'weight': 1}],
|
||||||
|
"height": 10}
|
||||||
|
|
||||||
|
variable_params = {"N": range(10, 100, 10)}
|
||||||
|
|
||||||
|
batch_run = BatchRunner(MoneyEnv,
|
||||||
|
variable_parameters=variable_params,
|
||||||
|
fixed_parameters=fixed_params,
|
||||||
|
iterations=5,
|
||||||
|
max_steps=100,
|
||||||
|
model_reporters={"Gini": compute_gini})
|
||||||
|
batch_run.run_all()
|
||||||
|
|
||||||
|
run_data = batch_run.get_model_vars_dataframe()
|
||||||
|
run_data.head()
|
||||||
|
print(run_data.Gini)
|
||||||
|
|
83
examples/mesa/wealth.py
Normal file
83
examples/mesa/wealth.py
Normal file
@ -0,0 +1,83 @@
|
|||||||
|
from mesa import Agent, Model
|
||||||
|
from mesa.space import MultiGrid
|
||||||
|
from mesa.time import RandomActivation
|
||||||
|
from mesa.datacollection import DataCollector
|
||||||
|
from mesa.batchrunner import BatchRunner
|
||||||
|
|
||||||
|
def compute_gini(model):
|
||||||
|
agent_wealths = [agent.wealth for agent in model.schedule.agents]
|
||||||
|
x = sorted(agent_wealths)
|
||||||
|
N = model.num_agents
|
||||||
|
B = sum( xi * (N-i) for i,xi in enumerate(x) ) / (N*sum(x))
|
||||||
|
return (1 + (1/N) - 2*B)
|
||||||
|
|
||||||
|
class MoneyAgent(Agent):
|
||||||
|
""" An agent with fixed initial wealth."""
|
||||||
|
def __init__(self, unique_id, model):
|
||||||
|
super().__init__(unique_id, model)
|
||||||
|
self.wealth = 1
|
||||||
|
|
||||||
|
def move(self):
|
||||||
|
possible_steps = self.model.grid.get_neighborhood(
|
||||||
|
self.pos,
|
||||||
|
moore=True,
|
||||||
|
include_center=False)
|
||||||
|
new_position = self.random.choice(possible_steps)
|
||||||
|
self.model.grid.move_agent(self, new_position)
|
||||||
|
|
||||||
|
def give_money(self):
|
||||||
|
cellmates = self.model.grid.get_cell_list_contents([self.pos])
|
||||||
|
if len(cellmates) > 1:
|
||||||
|
other = self.random.choice(cellmates)
|
||||||
|
other.wealth += 1
|
||||||
|
self.wealth -= 1
|
||||||
|
|
||||||
|
def step(self):
|
||||||
|
self.move()
|
||||||
|
if self.wealth > 0:
|
||||||
|
self.give_money()
|
||||||
|
|
||||||
|
class MoneyModel(Model):
|
||||||
|
"""A model with some number of agents."""
|
||||||
|
def __init__(self, N, width, height):
|
||||||
|
self.num_agents = N
|
||||||
|
self.grid = MultiGrid(width, height, True)
|
||||||
|
self.schedule = RandomActivation(self)
|
||||||
|
self.running = True
|
||||||
|
|
||||||
|
# Create agents
|
||||||
|
for i in range(self.num_agents):
|
||||||
|
a = MoneyAgent(i, self)
|
||||||
|
self.schedule.add(a)
|
||||||
|
# Add the agent to a random grid cell
|
||||||
|
x = self.random.randrange(self.grid.width)
|
||||||
|
y = self.random.randrange(self.grid.height)
|
||||||
|
self.grid.place_agent(a, (x, y))
|
||||||
|
|
||||||
|
self.datacollector = DataCollector(
|
||||||
|
model_reporters={"Gini": compute_gini},
|
||||||
|
agent_reporters={"Wealth": "wealth"})
|
||||||
|
|
||||||
|
def step(self):
|
||||||
|
self.datacollector.collect(self)
|
||||||
|
self.schedule.step()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
fixed_params = {"width": 10,
|
||||||
|
"height": 10}
|
||||||
|
variable_params = {"N": range(10, 500, 10)}
|
||||||
|
|
||||||
|
batch_run = BatchRunner(MoneyModel,
|
||||||
|
variable_params,
|
||||||
|
fixed_params,
|
||||||
|
iterations=5,
|
||||||
|
max_steps=100,
|
||||||
|
model_reporters={"Gini": compute_gini})
|
||||||
|
batch_run.run_all()
|
||||||
|
|
||||||
|
run_data = batch_run.get_model_vars_dataframe()
|
||||||
|
run_data.head()
|
||||||
|
print(run_data.Gini)
|
||||||
|
|
@ -18,12 +18,12 @@ class TerroristSpreadModel(FSM, Geo):
|
|||||||
prob_interaction
|
prob_interaction
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, environment=None, agent_id=0, state=()):
|
def __init__(self, model=None, unique_id=0, state=()):
|
||||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
super().__init__(model=model, unique_id=unique_id, state=state)
|
||||||
|
|
||||||
self.information_spread_intensity = environment.environment_params['information_spread_intensity']
|
self.information_spread_intensity = model.environment_params['information_spread_intensity']
|
||||||
self.terrorist_additional_influence = environment.environment_params['terrorist_additional_influence']
|
self.terrorist_additional_influence = model.environment_params['terrorist_additional_influence']
|
||||||
self.prob_interaction = environment.environment_params['prob_interaction']
|
self.prob_interaction = model.environment_params['prob_interaction']
|
||||||
|
|
||||||
if self['id'] == self.civilian.id: # Civilian
|
if self['id'] == self.civilian.id: # Civilian
|
||||||
self.mean_belief = random.uniform(0.00, 0.5)
|
self.mean_belief = random.uniform(0.00, 0.5)
|
||||||
@ -34,10 +34,10 @@ class TerroristSpreadModel(FSM, Geo):
|
|||||||
else:
|
else:
|
||||||
raise Exception('Invalid state id: {}'.format(self['id']))
|
raise Exception('Invalid state id: {}'.format(self['id']))
|
||||||
|
|
||||||
if 'min_vulnerability' in environment.environment_params:
|
if 'min_vulnerability' in model.environment_params:
|
||||||
self.vulnerability = random.uniform( environment.environment_params['min_vulnerability'], environment.environment_params['max_vulnerability'] )
|
self.vulnerability = random.uniform( model.environment_params['min_vulnerability'], model.environment_params['max_vulnerability'] )
|
||||||
else :
|
else :
|
||||||
self.vulnerability = random.uniform( 0, environment.environment_params['max_vulnerability'] )
|
self.vulnerability = random.uniform( 0, model.environment_params['max_vulnerability'] )
|
||||||
|
|
||||||
|
|
||||||
@state
|
@state
|
||||||
@ -93,11 +93,11 @@ class TrainingAreaModel(FSM, Geo):
|
|||||||
Requires TerroristSpreadModel.
|
Requires TerroristSpreadModel.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, environment=None, agent_id=0, state=()):
|
def __init__(self, model=None, unique_id=0, state=()):
|
||||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
super().__init__(model=model, unique_id=unique_id, state=state)
|
||||||
self.training_influence = environment.environment_params['training_influence']
|
self.training_influence = model.environment_params['training_influence']
|
||||||
if 'min_vulnerability' in environment.environment_params:
|
if 'min_vulnerability' in model.environment_params:
|
||||||
self.min_vulnerability = environment.environment_params['min_vulnerability']
|
self.min_vulnerability = model.environment_params['min_vulnerability']
|
||||||
else: self.min_vulnerability = 0
|
else: self.min_vulnerability = 0
|
||||||
|
|
||||||
@default_state
|
@default_state
|
||||||
@ -120,13 +120,13 @@ class HavenModel(FSM, Geo):
|
|||||||
Requires TerroristSpreadModel.
|
Requires TerroristSpreadModel.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, environment=None, agent_id=0, state=()):
|
def __init__(self, model=None, unique_id=0, state=()):
|
||||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
super().__init__(model=model, unique_id=unique_id, state=state)
|
||||||
self.haven_influence = environment.environment_params['haven_influence']
|
self.haven_influence = model.environment_params['haven_influence']
|
||||||
if 'min_vulnerability' in environment.environment_params:
|
if 'min_vulnerability' in model.environment_params:
|
||||||
self.min_vulnerability = environment.environment_params['min_vulnerability']
|
self.min_vulnerability = model.environment_params['min_vulnerability']
|
||||||
else: self.min_vulnerability = 0
|
else: self.min_vulnerability = 0
|
||||||
self.max_vulnerability = environment.environment_params['max_vulnerability']
|
self.max_vulnerability = model.environment_params['max_vulnerability']
|
||||||
|
|
||||||
def get_occupants(self, **kwargs):
|
def get_occupants(self, **kwargs):
|
||||||
return self.get_neighboring_agents(agent_type=TerroristSpreadModel, **kwargs)
|
return self.get_neighboring_agents(agent_type=TerroristSpreadModel, **kwargs)
|
||||||
@ -162,13 +162,13 @@ class TerroristNetworkModel(TerroristSpreadModel):
|
|||||||
weight_link_distance
|
weight_link_distance
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, environment=None, agent_id=0, state=()):
|
def __init__(self, model=None, unique_id=0, state=()):
|
||||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
super().__init__(model=model, unique_id=unique_id, state=state)
|
||||||
|
|
||||||
self.vision_range = environment.environment_params['vision_range']
|
self.vision_range = model.environment_params['vision_range']
|
||||||
self.sphere_influence = environment.environment_params['sphere_influence']
|
self.sphere_influence = model.environment_params['sphere_influence']
|
||||||
self.weight_social_distance = environment.environment_params['weight_social_distance']
|
self.weight_social_distance = model.environment_params['weight_social_distance']
|
||||||
self.weight_link_distance = environment.environment_params['weight_link_distance']
|
self.weight_link_distance = model.environment_params['weight_link_distance']
|
||||||
|
|
||||||
@state
|
@state
|
||||||
def terrorist(self):
|
def terrorist(self):
|
||||||
|
@ -1,9 +1,8 @@
|
|||||||
simpy>=4.0
|
|
||||||
networkx>=2.5
|
networkx>=2.5
|
||||||
numpy
|
numpy
|
||||||
matplotlib
|
matplotlib
|
||||||
pyyaml>=5.1
|
pyyaml>=5.1
|
||||||
pandas>=0.23
|
pandas>=0.23
|
||||||
scipy>=1.3
|
|
||||||
SALib>=1.3
|
SALib>=1.3
|
||||||
Jinja2
|
Jinja2
|
||||||
|
Mesa>=0.8
|
||||||
|
11
setup.py
11
setup.py
@ -16,6 +16,12 @@ def parse_requirements(filename):
|
|||||||
|
|
||||||
install_reqs = parse_requirements("requirements.txt")
|
install_reqs = parse_requirements("requirements.txt")
|
||||||
test_reqs = parse_requirements("test-requirements.txt")
|
test_reqs = parse_requirements("test-requirements.txt")
|
||||||
|
extras_require={
|
||||||
|
'mesa': ['mesa>=0.8.9'],
|
||||||
|
'geo': ['scipy>=1.3'],
|
||||||
|
'web': ['tornado']
|
||||||
|
}
|
||||||
|
extras_require['all'] = [dep for package in extras_require.values() for dep in package]
|
||||||
|
|
||||||
|
|
||||||
setup(
|
setup(
|
||||||
@ -40,10 +46,7 @@ setup(
|
|||||||
'Operating System :: POSIX',
|
'Operating System :: POSIX',
|
||||||
'Programming Language :: Python :: 3'],
|
'Programming Language :: Python :: 3'],
|
||||||
install_requires=install_reqs,
|
install_requires=install_reqs,
|
||||||
extras_require={
|
extras_require=extras_require,
|
||||||
'web': ['tornado']
|
|
||||||
|
|
||||||
},
|
|
||||||
tests_require=test_reqs,
|
tests_require=test_reqs,
|
||||||
setup_requires=['pytest-runner', ],
|
setup_requires=['pytest-runner', ],
|
||||||
include_package_data=True,
|
include_package_data=True,
|
||||||
|
@ -11,6 +11,7 @@ try:
|
|||||||
except NameError:
|
except NameError:
|
||||||
basestring = str
|
basestring = str
|
||||||
|
|
||||||
|
from .agents import *
|
||||||
from . import agents
|
from . import agents
|
||||||
from .simulation import *
|
from .simulation import *
|
||||||
from .environment import Environment
|
from .environment import Environment
|
||||||
@ -18,6 +19,7 @@ from .history import History
|
|||||||
from . import serialization
|
from . import serialization
|
||||||
from . import analysis
|
from . import analysis
|
||||||
from .utils import logger
|
from .utils import logger
|
||||||
|
from .time import *
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
import argparse
|
import argparse
|
||||||
|
@ -1,40 +1,31 @@
|
|||||||
import random
|
import random
|
||||||
from . import BaseAgent
|
from . import FSM, state, default_state
|
||||||
|
|
||||||
|
|
||||||
class BassModel(BaseAgent):
|
class BassModel(FSM):
|
||||||
"""
|
"""
|
||||||
Settings:
|
Settings:
|
||||||
innovation_prob
|
innovation_prob
|
||||||
imitation_prob
|
imitation_prob
|
||||||
"""
|
"""
|
||||||
|
sentimentCorrelation = 0
|
||||||
def __init__(self, environment, agent_id, state, **kwargs):
|
|
||||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
|
||||||
env_params = environment.environment_params
|
|
||||||
self.state['sentimentCorrelation'] = 0
|
|
||||||
|
|
||||||
def step(self):
|
def step(self):
|
||||||
self.behaviour()
|
self.behaviour()
|
||||||
|
|
||||||
def behaviour(self):
|
@default_state
|
||||||
# Outside effects
|
@state
|
||||||
if random.random() < self['innovation_prob']:
|
def innovation(self):
|
||||||
if self.state['id'] == 0:
|
if random.random() < self.innovation_prob:
|
||||||
self.state['id'] = 1
|
self.sentimentCorrelation = 1
|
||||||
self.state['sentimentCorrelation'] = 1
|
return self.aware
|
||||||
else:
|
else:
|
||||||
pass
|
aware_neighbors = self.get_neighboring_agents(state_id=self.aware.id)
|
||||||
|
|
||||||
return
|
|
||||||
|
|
||||||
# Imitation effects
|
|
||||||
if self.state['id'] == 0:
|
|
||||||
aware_neighbors = self.get_neighboring_agents(state_id=1)
|
|
||||||
num_neighbors_aware = len(aware_neighbors)
|
num_neighbors_aware = len(aware_neighbors)
|
||||||
if random.random() < (self['imitation_prob']*num_neighbors_aware):
|
if random.random() < (self['imitation_prob']*num_neighbors_aware):
|
||||||
self.state['id'] = 1
|
self.sentimentCorrelation = 1
|
||||||
self.state['sentimentCorrelation'] = 1
|
return self.aware
|
||||||
|
|
||||||
else:
|
@state
|
||||||
pass
|
def aware(self):
|
||||||
|
self.die()
|
||||||
|
@ -1,8 +1,8 @@
|
|||||||
import random
|
import random
|
||||||
from . import BaseAgent
|
from . import FSM, state, default_state
|
||||||
|
|
||||||
|
|
||||||
class BigMarketModel(BaseAgent):
|
class BigMarketModel(FSM):
|
||||||
"""
|
"""
|
||||||
Settings:
|
Settings:
|
||||||
Names:
|
Names:
|
||||||
@ -19,34 +19,25 @@ class BigMarketModel(BaseAgent):
|
|||||||
sentiment_about [Array]
|
sentiment_about [Array]
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, environment=None, agent_id=0, state=()):
|
def __init__(self, *args, **kwargs):
|
||||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
super().__init__(*args, **kwargs)
|
||||||
self.enterprises = environment.environment_params['enterprises']
|
self.enterprises = self.env.environment_params['enterprises']
|
||||||
self.type = ""
|
self.type = ""
|
||||||
self.number_of_enterprises = len(environment.environment_params['enterprises'])
|
|
||||||
|
|
||||||
if self.id < self.number_of_enterprises: # Enterprises
|
if self.id < len(self.enterprises): # Enterprises
|
||||||
self.state['id'] = self.id
|
self.set_state(self.enterprise.id)
|
||||||
self.type = "Enterprise"
|
self.type = "Enterprise"
|
||||||
self.tweet_probability = environment.environment_params['tweet_probability_enterprises'][self.id]
|
self.tweet_probability = environment.environment_params['tweet_probability_enterprises'][self.id]
|
||||||
else: # normal users
|
else: # normal users
|
||||||
self.state['id'] = self.number_of_enterprises
|
|
||||||
self.type = "User"
|
self.type = "User"
|
||||||
|
self.set_state(self.user.id)
|
||||||
self.tweet_probability = environment.environment_params['tweet_probability_users']
|
self.tweet_probability = environment.environment_params['tweet_probability_users']
|
||||||
self.tweet_relevant_probability = environment.environment_params['tweet_relevant_probability']
|
self.tweet_relevant_probability = environment.environment_params['tweet_relevant_probability']
|
||||||
self.tweet_probability_about = environment.environment_params['tweet_probability_about'] # List
|
self.tweet_probability_about = environment.environment_params['tweet_probability_about'] # List
|
||||||
self.sentiment_about = environment.environment_params['sentiment_about'] # List
|
self.sentiment_about = environment.environment_params['sentiment_about'] # List
|
||||||
|
|
||||||
def step(self):
|
@state
|
||||||
|
def enterprise(self):
|
||||||
if self.id < self.number_of_enterprises: # Enterprise
|
|
||||||
self.enterpriseBehaviour()
|
|
||||||
else: # Usuario
|
|
||||||
self.userBehaviour()
|
|
||||||
for i in range(self.number_of_enterprises): # So that it never is set to 0 if there are not changes (logs)
|
|
||||||
self.attrs['sentiment_enterprise_%s'% self.enterprises[i]] = self.sentiment_about[i]
|
|
||||||
|
|
||||||
def enterpriseBehaviour(self):
|
|
||||||
|
|
||||||
if random.random() < self.tweet_probability: # Tweets
|
if random.random() < self.tweet_probability: # Tweets
|
||||||
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbour users
|
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbour users
|
||||||
@ -64,12 +55,12 @@ class BigMarketModel(BaseAgent):
|
|||||||
|
|
||||||
x.attrs['sentiment_enterprise_%s'% self.enterprises[self.id]] = x.sentiment_about[self.id]
|
x.attrs['sentiment_enterprise_%s'% self.enterprises[self.id]] = x.sentiment_about[self.id]
|
||||||
|
|
||||||
def userBehaviour(self):
|
@state
|
||||||
|
def user(self):
|
||||||
if random.random() < self.tweet_probability: # Tweets
|
if random.random() < self.tweet_probability: # Tweets
|
||||||
if random.random() < self.tweet_relevant_probability: # Tweets something relevant
|
if random.random() < self.tweet_relevant_probability: # Tweets something relevant
|
||||||
# Tweet probability per enterprise
|
# Tweet probability per enterprise
|
||||||
for i in range(self.number_of_enterprises):
|
for i in range(len(self.enterprises)):
|
||||||
random_num = random.random()
|
random_num = random.random()
|
||||||
if random_num < self.tweet_probability_about[i]:
|
if random_num < self.tweet_probability_about[i]:
|
||||||
# The condition is fulfilled, sentiments are evaluated towards that enterprise
|
# The condition is fulfilled, sentiments are evaluated towards that enterprise
|
||||||
@ -82,6 +73,8 @@ class BigMarketModel(BaseAgent):
|
|||||||
else:
|
else:
|
||||||
# POSITIVO
|
# POSITIVO
|
||||||
self.userTweets("positive",i)
|
self.userTweets("positive",i)
|
||||||
|
for i in range(len(self.enterprises)): # So that it never is set to 0 if there are not changes (logs)
|
||||||
|
self.attrs['sentiment_enterprise_%s'% self.enterprises[i]] = self.sentiment_about[i]
|
||||||
|
|
||||||
def userTweets(self, sentiment,enterprise):
|
def userTweets(self, sentiment,enterprise):
|
||||||
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbours users
|
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbours users
|
||||||
|
20
soil/agents/Geo.py
Normal file
20
soil/agents/Geo.py
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
from scipy.spatial import cKDTree as KDTree
|
||||||
|
from . import NetworkAgent
|
||||||
|
|
||||||
|
class Geo(NetworkAgent):
|
||||||
|
'''In this type of network, nodes have a "pos" attribute.'''
|
||||||
|
|
||||||
|
def geo_search(self, radius, node=None, center=False, **kwargs):
|
||||||
|
'''Get a list of nodes whose coordinates are closer than *radius* to *node*.'''
|
||||||
|
node = as_node(node if node is not None else self)
|
||||||
|
|
||||||
|
G = self.subgraph(**kwargs)
|
||||||
|
|
||||||
|
pos = nx.get_node_attributes(G, 'pos')
|
||||||
|
if not pos:
|
||||||
|
return []
|
||||||
|
nodes, coords = list(zip(*pos.items()))
|
||||||
|
kdtree = KDTree(coords) # Cannot provide generator.
|
||||||
|
indices = kdtree.query_ball_point(pos[node], radius)
|
||||||
|
return [nodes[i] for i in indices if center or (nodes[i] != node)]
|
||||||
|
|
@ -10,10 +10,10 @@ class IndependentCascadeModel(BaseAgent):
|
|||||||
imitation_prob
|
imitation_prob
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, environment=None, agent_id=0, state=()):
|
def __init__(self, *args, **kwargs):
|
||||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
super().__init__(*args, **kwargs)
|
||||||
self.innovation_prob = environment.environment_params['innovation_prob']
|
self.innovation_prob = self.env.environment_params['innovation_prob']
|
||||||
self.imitation_prob = environment.environment_params['imitation_prob']
|
self.imitation_prob = self.env.environment_params['imitation_prob']
|
||||||
self.state['time_awareness'] = 0
|
self.state['time_awareness'] = 0
|
||||||
self.state['sentimentCorrelation'] = 0
|
self.state['sentimentCorrelation'] = 0
|
||||||
|
|
||||||
|
@ -21,8 +21,8 @@ class SpreadModelM2(BaseAgent):
|
|||||||
prob_generate_anti_rumor
|
prob_generate_anti_rumor
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, environment=None, agent_id=0, state=()):
|
def __init__(self, model=None, unique_id=0, state=()):
|
||||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
super().__init__(model=environment, unique_id=unique_id, state=state)
|
||||||
|
|
||||||
self.prob_neutral_making_denier = np.random.normal(environment.environment_params['prob_neutral_making_denier'],
|
self.prob_neutral_making_denier = np.random.normal(environment.environment_params['prob_neutral_making_denier'],
|
||||||
environment.environment_params['standard_variance'])
|
environment.environment_params['standard_variance'])
|
||||||
@ -123,8 +123,8 @@ class ControlModelM2(BaseAgent):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
def __init__(self, environment=None, agent_id=0, state=()):
|
def __init__(self, model=None, unique_id=0, state=()):
|
||||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
super().__init__(model=environment, unique_id=unique_id, state=state)
|
||||||
|
|
||||||
self.prob_neutral_making_denier = np.random.normal(environment.environment_params['prob_neutral_making_denier'],
|
self.prob_neutral_making_denier = np.random.normal(environment.environment_params['prob_neutral_making_denier'],
|
||||||
environment.environment_params['standard_variance'])
|
environment.environment_params['standard_variance'])
|
||||||
|
@ -29,8 +29,8 @@ class SISaModel(FSM):
|
|||||||
standard_variance
|
standard_variance
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, environment, agent_id=0, state=()):
|
def __init__(self, environment, unique_id=0, state=()):
|
||||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
super().__init__(model=environment, unique_id=unique_id, state=state)
|
||||||
|
|
||||||
self.neutral_discontent_spon_prob = np.random.normal(self.env['neutral_discontent_spon_prob'],
|
self.neutral_discontent_spon_prob = np.random.normal(self.env['neutral_discontent_spon_prob'],
|
||||||
self.env['standard_variance'])
|
self.env['standard_variance'])
|
||||||
|
@ -16,8 +16,8 @@ class SentimentCorrelationModel(BaseAgent):
|
|||||||
disgust_prob
|
disgust_prob
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, environment, agent_id=0, state=()):
|
def __init__(self, environment, unique_id=0, state=()):
|
||||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
super().__init__(model=environment, unique_id=unique_id, state=state)
|
||||||
self.outside_effects_prob = environment.environment_params['outside_effects_prob']
|
self.outside_effects_prob = environment.environment_params['outside_effects_prob']
|
||||||
self.anger_prob = environment.environment_params['anger_prob']
|
self.anger_prob = environment.environment_params['anger_prob']
|
||||||
self.joy_prob = environment.environment_params['joy_prob']
|
self.joy_prob = environment.environment_params['joy_prob']
|
||||||
|
@ -1,21 +1,15 @@
|
|||||||
# networkStatus = {} # Dict that will contain the status of every agent in the network
|
|
||||||
# sentimentCorrelationNodeArray = []
|
|
||||||
# for x in range(0, settings.network_params["number_of_nodes"]):
|
|
||||||
# sentimentCorrelationNodeArray.append({'id': x})
|
|
||||||
# Initialize agent states. Let's assume everyone is normal.
|
|
||||||
|
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
from collections import OrderedDict
|
from collections import OrderedDict, defaultdict
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from scipy.spatial import cKDTree as KDTree
|
|
||||||
import json
|
import json
|
||||||
import simpy
|
import networkx as nx
|
||||||
|
|
||||||
from functools import wraps
|
from functools import wraps
|
||||||
|
|
||||||
from .. import serialization, history, utils
|
from .. import serialization, history, utils, time
|
||||||
|
|
||||||
|
from mesa import Agent
|
||||||
|
|
||||||
|
|
||||||
def as_node(agent):
|
def as_node(agent):
|
||||||
@ -24,39 +18,51 @@ def as_node(agent):
|
|||||||
return agent
|
return agent
|
||||||
|
|
||||||
|
|
||||||
class BaseAgent:
|
class BaseAgent(Agent):
|
||||||
"""
|
"""
|
||||||
A special simpy BaseAgent that keeps track of its state history.
|
A special Agent that keeps track of its state history.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
defaults = {}
|
defaults = {}
|
||||||
|
|
||||||
def __init__(self, environment, agent_id, state=None,
|
def __init__(self,
|
||||||
name=None, interval=None):
|
unique_id,
|
||||||
|
model,
|
||||||
|
state=None,
|
||||||
|
name=None,
|
||||||
|
interval=None):
|
||||||
# Check for REQUIRED arguments
|
# Check for REQUIRED arguments
|
||||||
assert environment is not None, TypeError('__init__ missing 1 required keyword argument: \'environment\'. '
|
|
||||||
'Cannot be NoneType.')
|
|
||||||
# Initialize agent parameters
|
# Initialize agent parameters
|
||||||
self.id = agent_id
|
if isinstance(unique_id, Agent):
|
||||||
self.name = name or '{}[{}]'.format(type(self).__name__, self.id)
|
raise Exception()
|
||||||
|
super().__init__(unique_id=unique_id, model=model)
|
||||||
# Register agent to environment
|
self.name = name or '{}[{}]'.format(type(self).__name__, self.unique_id)
|
||||||
self.env = environment
|
|
||||||
|
|
||||||
self._neighbors = None
|
self._neighbors = None
|
||||||
self.alive = True
|
self.alive = True
|
||||||
real_state = deepcopy(self.defaults)
|
real_state = deepcopy(self.defaults)
|
||||||
real_state.update(state or {})
|
real_state.update(state or {})
|
||||||
self.state = real_state
|
self.state = real_state
|
||||||
self.interval = interval
|
|
||||||
|
|
||||||
self.logger = logging.getLogger(self.env.name).getChild(self.name)
|
self.interval = interval or self.get('interval', getattr(self.model, 'interval', 1))
|
||||||
|
self.logger = logging.getLogger(self.model.name).getChild(self.name)
|
||||||
|
|
||||||
if hasattr(self, 'level'):
|
if hasattr(self, 'level'):
|
||||||
self.logger.setLevel(self.level)
|
self.logger.setLevel(self.level)
|
||||||
|
|
||||||
# initialize every time an instance of the agent is created
|
|
||||||
self.action = self.env.process(self.run())
|
# TODO: refactor to clean up mesa compatibility
|
||||||
|
@property
|
||||||
|
def id(self):
|
||||||
|
return self.unique_id
|
||||||
|
|
||||||
|
@property
|
||||||
|
def env(self):
|
||||||
|
return self.model
|
||||||
|
|
||||||
|
@env.setter
|
||||||
|
def env(self, model):
|
||||||
|
self.model = model
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def state(self):
|
def state(self):
|
||||||
@ -76,17 +82,17 @@ class BaseAgent:
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def environment_params(self):
|
def environment_params(self):
|
||||||
return self.env.environment_params
|
return self.model.environment_params
|
||||||
|
|
||||||
@environment_params.setter
|
@environment_params.setter
|
||||||
def environment_params(self, value):
|
def environment_params(self, value):
|
||||||
self.env.environment_params = value
|
self.model.environment_params = value
|
||||||
|
|
||||||
def __getitem__(self, key):
|
def __getitem__(self, key):
|
||||||
if isinstance(key, tuple):
|
if isinstance(key, tuple):
|
||||||
key, t_step = key
|
key, t_step = key
|
||||||
k = history.Key(key=key, t_step=t_step, agent_id=self.id)
|
k = history.Key(key=key, t_step=t_step, agent_id=self.id)
|
||||||
return self.env[k]
|
return self.model[k]
|
||||||
return self._state.get(key, None)
|
return self._state.get(key, None)
|
||||||
|
|
||||||
def __delitem__(self, key):
|
def __delitem__(self, key):
|
||||||
@ -100,7 +106,7 @@ class BaseAgent:
|
|||||||
k = history.Key(t_step=self.now,
|
k = history.Key(t_step=self.now,
|
||||||
agent_id=self.id,
|
agent_id=self.id,
|
||||||
key=key)
|
key=key)
|
||||||
self.env[k] = value
|
self.model[k] = value
|
||||||
|
|
||||||
def items(self):
|
def items(self):
|
||||||
return self._state.items()
|
return self._state.items()
|
||||||
@ -111,29 +117,33 @@ class BaseAgent:
|
|||||||
@property
|
@property
|
||||||
def now(self):
|
def now(self):
|
||||||
try:
|
try:
|
||||||
return self.env.now
|
return self.model.now
|
||||||
except AttributeError:
|
except AttributeError:
|
||||||
# No environment
|
# No environment
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def run(self):
|
|
||||||
if self.interval is not None:
|
|
||||||
interval = self.interval
|
|
||||||
elif 'interval' in self:
|
|
||||||
interval = self['interval']
|
|
||||||
else:
|
|
||||||
interval = self.env.interval
|
|
||||||
while self.alive:
|
|
||||||
res = self.step()
|
|
||||||
yield res or self.env.timeout(interval)
|
|
||||||
|
|
||||||
def die(self, remove=False):
|
def die(self, remove=False):
|
||||||
self.alive = False
|
self.alive = False
|
||||||
if remove:
|
if remove:
|
||||||
self.remove_node(self.id)
|
self.remove_node(self.id)
|
||||||
|
|
||||||
def step(self):
|
def step(self):
|
||||||
|
if not self.alive:
|
||||||
|
return time.When('inf')
|
||||||
|
return super().step() or time.Delta(self.interval)
|
||||||
|
|
||||||
|
def log(self, message, *args, level=logging.INFO, **kwargs):
|
||||||
|
if not self.logger.isEnabledFor(level):
|
||||||
return
|
return
|
||||||
|
message = message + " ".join(str(i) for i in args)
|
||||||
|
message = " @{:>3}: {}".format(self.now, message)
|
||||||
|
for k, v in kwargs:
|
||||||
|
message += " {k}={v} ".format(k, v)
|
||||||
|
extra = {}
|
||||||
|
extra['now'] = self.now
|
||||||
|
extra['unique_id'] = self.unique_id
|
||||||
|
extra['agent_name'] = self.name
|
||||||
|
return self.logger.log(level, message, extra=extra)
|
||||||
|
|
||||||
def debug(self, *args, **kwargs):
|
def debug(self, *args, **kwargs):
|
||||||
return self.log(*args, level=logging.DEBUG, **kwargs)
|
return self.log(*args, level=logging.DEBUG, **kwargs)
|
||||||
@ -149,7 +159,7 @@ class BaseAgent:
|
|||||||
'''
|
'''
|
||||||
state = {}
|
state = {}
|
||||||
state['id'] = self.id
|
state['id'] = self.id
|
||||||
state['environment'] = self.env
|
state['environment'] = self.model
|
||||||
state['_state'] = self._state
|
state['_state'] = self._state
|
||||||
return state
|
return state
|
||||||
|
|
||||||
@ -157,19 +167,19 @@ class BaseAgent:
|
|||||||
'''
|
'''
|
||||||
Get back a serialized agent and try to re-compose it
|
Get back a serialized agent and try to re-compose it
|
||||||
'''
|
'''
|
||||||
self.id = state['id']
|
self.state_id = state['id']
|
||||||
self._state = state['_state']
|
self._state = state['_state']
|
||||||
self.env = state['environment']
|
self.model = state['environment']
|
||||||
|
|
||||||
class NetworkAgent(BaseAgent):
|
class NetworkAgent(BaseAgent):
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def topology(self):
|
def topology(self):
|
||||||
return self.env.G
|
return self.model.G
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def G(self):
|
def G(self):
|
||||||
return self.env.G
|
return self.model.G
|
||||||
|
|
||||||
def count_agents(self, **kwargs):
|
def count_agents(self, **kwargs):
|
||||||
return len(list(self.get_agents(**kwargs)))
|
return len(list(self.get_agents(**kwargs)))
|
||||||
@ -182,37 +192,26 @@ class NetworkAgent(BaseAgent):
|
|||||||
|
|
||||||
def get_agents(self, agents=None, limit_neighbors=False, **kwargs):
|
def get_agents(self, agents=None, limit_neighbors=False, **kwargs):
|
||||||
if limit_neighbors:
|
if limit_neighbors:
|
||||||
agents = self.topology.neighbors(self.id)
|
agents = self.topology.neighbors(self.unique_id)
|
||||||
|
|
||||||
agents = self.env.get_agents(agents)
|
agents = self.model.get_agents(agents)
|
||||||
return select(agents, **kwargs)
|
return select(agents, **kwargs)
|
||||||
|
|
||||||
def log(self, message, *args, level=logging.INFO, **kwargs):
|
|
||||||
message = message + " ".join(str(i) for i in args)
|
|
||||||
message = " @{:>3}: {}".format(self.now, message)
|
|
||||||
for k, v in kwargs:
|
|
||||||
message += " {k}={v} ".format(k, v)
|
|
||||||
extra = {}
|
|
||||||
extra['now'] = self.now
|
|
||||||
extra['agent_id'] = self.id
|
|
||||||
extra['agent_name'] = self.name
|
|
||||||
return self.logger.log(level, message, extra=extra)
|
|
||||||
|
|
||||||
def subgraph(self, center=True, **kwargs):
|
def subgraph(self, center=True, **kwargs):
|
||||||
include = [self] if center else []
|
include = [self] if center else []
|
||||||
return self.topology.subgraph(n.id for n in self.get_agents(**kwargs)+include)
|
return self.topology.subgraph(n.unique_id for n in self.get_agents(**kwargs)+include)
|
||||||
|
|
||||||
def remove_node(self, agent_id):
|
def remove_node(self, unique_id):
|
||||||
self.topology.remove_node(agent_id)
|
self.topology.remove_node(unique_id)
|
||||||
|
|
||||||
def add_edge(self, other, edge_attr_dict=None, *edge_attrs):
|
def add_edge(self, other, edge_attr_dict=None, *edge_attrs):
|
||||||
# return super(NetworkAgent, self).add_edge(node1=self.id, node2=other, **kwargs)
|
# return super(NetworkAgent, self).add_edge(node1=self.id, node2=other, **kwargs)
|
||||||
if self.id not in self.topology.nodes(data=False):
|
if self.unique_id not in self.topology.nodes(data=False):
|
||||||
raise ValueError('{} not in list of existing agents in the network'.format(self.id))
|
raise ValueError('{} not in list of existing agents in the network'.format(self.unique_id))
|
||||||
if other not in self.topology.nodes(data=False):
|
if other not in self.topology.nodes(data=False):
|
||||||
raise ValueError('{} not in list of existing agents in the network'.format(other))
|
raise ValueError('{} not in list of existing agents in the network'.format(other))
|
||||||
|
|
||||||
self.topology.add_edge(self.id, other, edge_attr_dict=edge_attr_dict, *edge_attrs)
|
self.topology.add_edge(self.unique_id, other, edge_attr_dict=edge_attr_dict, *edge_attrs)
|
||||||
|
|
||||||
|
|
||||||
def ego_search(self, steps=1, center=False, node=None, **kwargs):
|
def ego_search(self, steps=1, center=False, node=None, **kwargs):
|
||||||
@ -223,17 +222,17 @@ class NetworkAgent(BaseAgent):
|
|||||||
|
|
||||||
def degree(self, node, force=False):
|
def degree(self, node, force=False):
|
||||||
node = as_node(node)
|
node = as_node(node)
|
||||||
if force or (not hasattr(self.env, '_degree')) or getattr(self.env, '_last_step', 0) < self.now:
|
if force or (not hasattr(self.model, '_degree')) or getattr(self.model, '_last_step', 0) < self.now:
|
||||||
self.env._degree = nx.degree_centrality(self.topology)
|
self.model._degree = nx.degree_centrality(self.topology)
|
||||||
self.env._last_step = self.now
|
self.model._last_step = self.now
|
||||||
return self.env._degree[node]
|
return self.model._degree[node]
|
||||||
|
|
||||||
def betweenness(self, node, force=False):
|
def betweenness(self, node, force=False):
|
||||||
node = as_node(node)
|
node = as_node(node)
|
||||||
if force or (not hasattr(self.env, '_betweenness')) or getattr(self.env, '_last_step', 0) < self.now:
|
if force or (not hasattr(self.model, '_betweenness')) or getattr(self.model, '_last_step', 0) < self.now:
|
||||||
self.env._betweenness = nx.betweenness_centrality(self.topology)
|
self.model._betweenness = nx.betweenness_centrality(self.topology)
|
||||||
self.env._last_step = self.now
|
self.model._last_step = self.now
|
||||||
return self.env._betweenness[node]
|
return self.model._betweenness[node]
|
||||||
|
|
||||||
|
|
||||||
def state(name=None):
|
def state(name=None):
|
||||||
@ -301,36 +300,29 @@ class FSM(NetworkAgent, metaclass=MetaFSM):
|
|||||||
super(FSM, self).__init__(*args, **kwargs)
|
super(FSM, self).__init__(*args, **kwargs)
|
||||||
if 'id' not in self.state:
|
if 'id' not in self.state:
|
||||||
if not self.default_state:
|
if not self.default_state:
|
||||||
raise ValueError('No default state specified for {}'.format(self.id))
|
raise ValueError('No default state specified for {}'.format(self.unique_id))
|
||||||
self['id'] = self.default_state.id
|
self['id'] = self.default_state.id
|
||||||
self._next_change = simpy.core.Infinity
|
|
||||||
self._next_state = self.state
|
self.set_state(self.state['id'])
|
||||||
|
|
||||||
def step(self):
|
def step(self):
|
||||||
if self._next_change < self.now:
|
self.debug(f'Agent {self.unique_id} @ state {self["id"]}')
|
||||||
next_state = self._next_state
|
interval = super().step()
|
||||||
self._next_change = simpy.core.Infinity
|
if 'id' not in self:
|
||||||
self['id'] = next_state
|
if 'id' in self.state:
|
||||||
elif 'id' in self.state:
|
self.set_state(self['state_id'])
|
||||||
next_state = self['id']
|
|
||||||
elif self.default_state:
|
elif self.default_state:
|
||||||
next_state = self.default_state.id
|
self.set_state(self.default_state.id)
|
||||||
else:
|
else:
|
||||||
raise Exception('{} has no valid state id or default state'.format(self))
|
raise Exception('{} has no valid state id or default state'.format(self))
|
||||||
if next_state not in self.states:
|
return self.states[self['id']](self) or interval
|
||||||
raise Exception('{} is not a valid id for {}'.format(next_state, self))
|
|
||||||
return self.states[next_state](self)
|
|
||||||
|
|
||||||
def next_state(self, state):
|
|
||||||
self._next_change = self.now
|
|
||||||
self._next_state = state
|
|
||||||
|
|
||||||
def set_state(self, state):
|
def set_state(self, state):
|
||||||
if hasattr(state, 'id'):
|
if hasattr(state, 'id'):
|
||||||
state = state.id
|
state = state.id
|
||||||
if state not in self.states:
|
if state not in self.states:
|
||||||
raise ValueError('{} is not a valid state'.format(state))
|
raise ValueError('{} is not a valid state'.format(state))
|
||||||
self['id'] = state
|
self['state_id'] = state
|
||||||
return state
|
return state
|
||||||
|
|
||||||
|
|
||||||
@ -349,9 +341,6 @@ def prob(prob=1):
|
|||||||
return r < prob
|
return r < prob
|
||||||
|
|
||||||
|
|
||||||
STATIC_THRESHOLD = (-1, -1)
|
|
||||||
|
|
||||||
|
|
||||||
def calculate_distribution(network_agents=None,
|
def calculate_distribution(network_agents=None,
|
||||||
agent_type=None):
|
agent_type=None):
|
||||||
'''
|
'''
|
||||||
@ -379,7 +368,7 @@ def calculate_distribution(network_agents=None,
|
|||||||
'agent_type_1'.
|
'agent_type_1'.
|
||||||
'''
|
'''
|
||||||
if network_agents:
|
if network_agents:
|
||||||
network_agents = deepcopy(network_agents)
|
network_agents = [deepcopy(agent) for agent in network_agents if not hasattr(agent, 'id')]
|
||||||
elif agent_type:
|
elif agent_type:
|
||||||
network_agents = [{'agent_type': agent_type}]
|
network_agents = [{'agent_type': agent_type}]
|
||||||
else:
|
else:
|
||||||
@ -394,7 +383,6 @@ def calculate_distribution(network_agents=None,
|
|||||||
acc = 0
|
acc = 0
|
||||||
for v in network_agents:
|
for v in network_agents:
|
||||||
if 'ids' in v:
|
if 'ids' in v:
|
||||||
v['threshold'] = STATIC_THRESHOLD
|
|
||||||
continue
|
continue
|
||||||
upper = acc + (v['weight']/total)
|
upper = acc + (v['weight']/total)
|
||||||
v['threshold'] = [acc, upper]
|
v['threshold'] = [acc, upper]
|
||||||
@ -409,7 +397,7 @@ def serialize_type(agent_type, known_modules=[], **kwargs):
|
|||||||
return serialization.serialize(agent_type, known_modules=known_modules, **kwargs)[1] # Get the name of the class
|
return serialization.serialize(agent_type, known_modules=known_modules, **kwargs)[1] # Get the name of the class
|
||||||
|
|
||||||
|
|
||||||
def serialize_distribution(network_agents, known_modules=[]):
|
def serialize_definition(network_agents, known_modules=[]):
|
||||||
'''
|
'''
|
||||||
When serializing an agent distribution, remove the thresholds, in order
|
When serializing an agent distribution, remove the thresholds, in order
|
||||||
to avoid cluttering the YAML definition file.
|
to avoid cluttering the YAML definition file.
|
||||||
@ -431,7 +419,7 @@ def deserialize_type(agent_type, known_modules=[]):
|
|||||||
return agent_type
|
return agent_type
|
||||||
|
|
||||||
|
|
||||||
def deserialize_distribution(ind, **kwargs):
|
def deserialize_definition(ind, **kwargs):
|
||||||
d = deepcopy(ind)
|
d = deepcopy(ind)
|
||||||
for v in d:
|
for v in d:
|
||||||
v['agent_type'] = deserialize_type(v['agent_type'], **kwargs)
|
v['agent_type'] = deserialize_type(v['agent_type'], **kwargs)
|
||||||
@ -452,44 +440,84 @@ def _validate_states(states, topology):
|
|||||||
def _convert_agent_types(ind, to_string=False, **kwargs):
|
def _convert_agent_types(ind, to_string=False, **kwargs):
|
||||||
'''Convenience method to allow specifying agents by class or class name.'''
|
'''Convenience method to allow specifying agents by class or class name.'''
|
||||||
if to_string:
|
if to_string:
|
||||||
return serialize_distribution(ind, **kwargs)
|
return serialize_definition(ind, **kwargs)
|
||||||
return deserialize_distribution(ind, **kwargs)
|
return deserialize_definition(ind, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
def _agent_from_distribution(distribution, value=-1, agent_id=None):
|
def _agent_from_definition(definition, value=-1, unique_id=None):
|
||||||
"""Used in the initialization of agents given an agent distribution."""
|
"""Used in the initialization of agents given an agent distribution."""
|
||||||
if value < 0:
|
if value < 0:
|
||||||
value = random.random()
|
value = random.random()
|
||||||
for d in sorted(distribution, key=lambda x: x['threshold']):
|
for d in sorted(definition, key=lambda x: x.get('threshold')):
|
||||||
threshold = d['threshold']
|
threshold = d.get('threshold', (-1, -1))
|
||||||
# Check if the definition matches by id (first) or by threshold
|
# Check if the definition matches by id (first) or by threshold
|
||||||
if not ((agent_id is not None and threshold == STATIC_THRESHOLD and agent_id in d['ids']) or \
|
if (unique_id is not None and unique_id in d.get('ids', [])) or \
|
||||||
(value >= threshold[0] and value < threshold[1])):
|
(value >= threshold[0] and value < threshold[1]):
|
||||||
continue
|
|
||||||
state = {}
|
state = {}
|
||||||
if 'state' in d:
|
if 'state' in d:
|
||||||
state = deepcopy(d['state'])
|
state = deepcopy(d['state'])
|
||||||
return d['agent_type'], state
|
return d['agent_type'], state
|
||||||
|
|
||||||
raise Exception('Distribution for value {} not found in: {}'.format(value, distribution))
|
raise Exception('Definition for value {} not found in: {}'.format(value, definition))
|
||||||
|
|
||||||
|
|
||||||
class Geo(NetworkAgent):
|
def _definition_to_dict(definition, size=None, default_state=None):
|
||||||
'''In this type of network, nodes have a "pos" attribute.'''
|
state = default_state or {}
|
||||||
|
agents = {}
|
||||||
|
remaining = {}
|
||||||
|
if size:
|
||||||
|
for ix in range(size):
|
||||||
|
remaining[ix] = copy(state)
|
||||||
|
else:
|
||||||
|
remaining = defaultdict(lambda x: copy(state))
|
||||||
|
|
||||||
def geo_search(self, radius, node=None, center=False, **kwargs):
|
distro = sorted([item for item in definition if 'weight' in item])
|
||||||
'''Get a list of nodes whose coordinates are closer than *radius* to *node*.'''
|
|
||||||
node = as_node(node if node is not None else self)
|
|
||||||
|
|
||||||
G = self.subgraph(**kwargs)
|
ix = 0
|
||||||
|
def init_agent(item, id=ix):
|
||||||
|
while id in agents:
|
||||||
|
id += 1
|
||||||
|
|
||||||
pos = nx.get_node_attributes(G, 'pos')
|
agent = remaining[id]
|
||||||
if not pos:
|
agent['state'].update(copy(item.get('state', {})))
|
||||||
return []
|
agents[id] = agent
|
||||||
nodes, coords = list(zip(*pos.items()))
|
del remaining[id]
|
||||||
kdtree = KDTree(coords) # Cannot provide generator.
|
return agent
|
||||||
indices = kdtree.query_ball_point(pos[node], radius)
|
|
||||||
return [nodes[i] for i in indices if center or (nodes[i] != node)]
|
for item in definition:
|
||||||
|
if 'ids' in item:
|
||||||
|
ids = item['ids']
|
||||||
|
del item['ids']
|
||||||
|
for id in ids:
|
||||||
|
agent = init_agent(item, id)
|
||||||
|
|
||||||
|
for item in definition:
|
||||||
|
if 'number' in item:
|
||||||
|
times = item['number']
|
||||||
|
del item['number']
|
||||||
|
for times in range(times):
|
||||||
|
if size:
|
||||||
|
ix = random.choice(remaining.keys())
|
||||||
|
agent = init_agent(item, id)
|
||||||
|
else:
|
||||||
|
agent = init_agent(item)
|
||||||
|
if not size:
|
||||||
|
return agents
|
||||||
|
|
||||||
|
if len(remaining) < 0:
|
||||||
|
raise Exception('Invalid definition. Too many agents to add')
|
||||||
|
|
||||||
|
|
||||||
|
total_weight = float(sum(s['weight'] for s in distro))
|
||||||
|
unit = size / total_weight
|
||||||
|
|
||||||
|
for item in distro:
|
||||||
|
times = unit * item['weight']
|
||||||
|
del item['weight']
|
||||||
|
for times in range(times):
|
||||||
|
ix = random.choice(remaining.keys())
|
||||||
|
agent = init_agent(item, id)
|
||||||
|
return agents
|
||||||
|
|
||||||
|
|
||||||
def select(agents, state_id=None, agent_type=None, ignore=None, iterator=False, **kwargs):
|
def select(agents, state_id=None, agent_type=None, ignore=None, iterator=False, **kwargs):
|
||||||
@ -502,22 +530,21 @@ def select(agents, state_id=None, agent_type=None, ignore=None, iterator=False,
|
|||||||
except TypeError:
|
except TypeError:
|
||||||
agent_type = tuple([agent_type])
|
agent_type = tuple([agent_type])
|
||||||
|
|
||||||
def matches_all(agent):
|
checks = []
|
||||||
if state_id is not None:
|
|
||||||
if agent.state.get('id', None) not in state_id:
|
f = agents
|
||||||
return False
|
|
||||||
if agent_type is not None:
|
|
||||||
if not isinstance(agent, agent_type):
|
|
||||||
return False
|
|
||||||
state = agent.state
|
|
||||||
for k, v in kwargs.items():
|
|
||||||
if state.get(k, None) != v:
|
|
||||||
return False
|
|
||||||
return True
|
|
||||||
|
|
||||||
f = filter(matches_all, agents)
|
|
||||||
if ignore:
|
if ignore:
|
||||||
f = filter(lambda x: x not in ignore, f)
|
f = filter(lambda x: x not in ignore, f)
|
||||||
|
|
||||||
|
if state_id is not None:
|
||||||
|
f = filter(lambda agent: agent.state.get('id', None) in state_id, f)
|
||||||
|
|
||||||
|
if agent_type is not None:
|
||||||
|
f = filter(lambda agent: isinstance(agent, agent_type), f)
|
||||||
|
for k, v in kwargs.items():
|
||||||
|
f = filter(lambda agent: agent.state.get(k, None) == v, f)
|
||||||
|
|
||||||
if iterator:
|
if iterator:
|
||||||
return f
|
return f
|
||||||
return list(f)
|
return list(f)
|
||||||
@ -530,3 +557,10 @@ from .ModelM2 import *
|
|||||||
from .SentimentCorrelationModel import *
|
from .SentimentCorrelationModel import *
|
||||||
from .SISaModel import *
|
from .SISaModel import *
|
||||||
from .CounterModel import *
|
from .CounterModel import *
|
||||||
|
|
||||||
|
try:
|
||||||
|
import scipy
|
||||||
|
from .Geo import Geo
|
||||||
|
except ImportError:
|
||||||
|
import sys
|
||||||
|
print('Could not load the Geo Agent, scipy is not installed', file=sys.stderr)
|
||||||
|
@ -61,7 +61,12 @@ def convert_row(row):
|
|||||||
|
|
||||||
|
|
||||||
def convert_types_slow(df):
|
def convert_types_slow(df):
|
||||||
'''This is a slow operation.'''
|
'''
|
||||||
|
Go over every column in a dataframe and convert it to the type determined by the `get_types`
|
||||||
|
function.
|
||||||
|
|
||||||
|
This is a slow operation.
|
||||||
|
'''
|
||||||
dtypes = get_types(df)
|
dtypes = get_types(df)
|
||||||
for k, v in dtypes.items():
|
for k, v in dtypes.items():
|
||||||
t = df[df['key']==k]
|
t = df[df['key']==k]
|
||||||
@ -102,6 +107,9 @@ def process(df, **kwargs):
|
|||||||
|
|
||||||
|
|
||||||
def get_types(df):
|
def get_types(df):
|
||||||
|
'''
|
||||||
|
Get the value type for every key stored in a raw history dataframe.
|
||||||
|
'''
|
||||||
dtypes = df.groupby(by=['key'])['value_type'].unique()
|
dtypes = df.groupby(by=['key'])['value_type'].unique()
|
||||||
return {k:v[0] for k,v in dtypes.iteritems()}
|
return {k:v[0] for k,v in dtypes.iteritems()}
|
||||||
|
|
||||||
@ -126,8 +134,14 @@ def process_one(df, *keys, columns=['key', 'agent_id'], values='value',
|
|||||||
|
|
||||||
|
|
||||||
def get_count(df, *keys):
|
def get_count(df, *keys):
|
||||||
|
'''
|
||||||
|
For every t_step and key, get the value count.
|
||||||
|
|
||||||
|
The result is a dataframe with `t_step` as index, an a multiindex column based on `key` and the values found for each `key`.
|
||||||
|
'''
|
||||||
if keys:
|
if keys:
|
||||||
df = df[list(keys)]
|
df = df[list(keys)]
|
||||||
|
df.columns = df.columns.remove_unused_levels()
|
||||||
counts = pd.DataFrame()
|
counts = pd.DataFrame()
|
||||||
for key in df.columns.levels[0]:
|
for key in df.columns.levels[0]:
|
||||||
g = df[[key]].apply(pd.Series.value_counts, axis=1).fillna(0)
|
g = df[[key]].apply(pd.Series.value_counts, axis=1).fillna(0)
|
||||||
@ -137,10 +151,25 @@ def get_count(df, *keys):
|
|||||||
return counts
|
return counts
|
||||||
|
|
||||||
|
|
||||||
|
def get_majority(df, *keys):
|
||||||
|
'''
|
||||||
|
For every t_step and key, get the value of the majority of agents
|
||||||
|
|
||||||
|
The result is a dataframe with `t_step` as index, and columns based on `key`.
|
||||||
|
'''
|
||||||
|
df = get_count(df, *keys)
|
||||||
|
return df.stack(level=0).idxmax(axis=1).unstack()
|
||||||
|
|
||||||
|
|
||||||
def get_value(df, *keys, aggfunc='sum'):
|
def get_value(df, *keys, aggfunc='sum'):
|
||||||
|
'''
|
||||||
|
For every t_step and key, get the value of *numeric columns*, aggregated using a specific function.
|
||||||
|
'''
|
||||||
if keys:
|
if keys:
|
||||||
df = df[list(keys)]
|
df = df[list(keys)]
|
||||||
return df.groupby(axis=1, level=0).agg(aggfunc)
|
df.columns = df.columns.remove_unused_levels()
|
||||||
|
df = df.select_dtypes('number')
|
||||||
|
return df.groupby(level='key', axis=1).agg(aggfunc)
|
||||||
|
|
||||||
|
|
||||||
def plot_all(*args, plot_args={}, **kwargs):
|
def plot_all(*args, plot_args={}, **kwargs):
|
||||||
|
26
soil/datacollection.py
Normal file
26
soil/datacollection.py
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
from mesa import DataCollector as MDC
|
||||||
|
|
||||||
|
class SoilDataCollector(MDC):
|
||||||
|
|
||||||
|
|
||||||
|
def __init__(self, environment, *args, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
# Populate model and env reporters so they have a key per
|
||||||
|
# So they can be shown in the web interface
|
||||||
|
self.environment = environment
|
||||||
|
|
||||||
|
|
||||||
|
@property
|
||||||
|
def model_vars(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
@model_vars.setter
|
||||||
|
def model_vars(self, value):
|
||||||
|
pass
|
||||||
|
|
||||||
|
@property
|
||||||
|
def agent_reporters(self):
|
||||||
|
self.model._history._
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
@ -1,19 +1,20 @@
|
|||||||
import os
|
import os
|
||||||
import sqlite3
|
import sqlite3
|
||||||
import time
|
|
||||||
import csv
|
import csv
|
||||||
|
import math
|
||||||
import random
|
import random
|
||||||
import simpy
|
|
||||||
import yaml
|
import yaml
|
||||||
import tempfile
|
import tempfile
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
from time import time as current_time
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from networkx.readwrite import json_graph
|
from networkx.readwrite import json_graph
|
||||||
|
|
||||||
import networkx as nx
|
import networkx as nx
|
||||||
import simpy
|
|
||||||
|
|
||||||
from . import serialization, agents, analysis, history, utils
|
from mesa import Model
|
||||||
|
|
||||||
|
from . import serialization, agents, analysis, history, utils, time
|
||||||
|
|
||||||
# These properties will be copied when pickling/unpickling the environment
|
# These properties will be copied when pickling/unpickling the environment
|
||||||
_CONFIG_PROPS = [ 'name',
|
_CONFIG_PROPS = [ 'name',
|
||||||
@ -22,7 +23,7 @@ _CONFIG_PROPS = [ 'name',
|
|||||||
'interval',
|
'interval',
|
||||||
]
|
]
|
||||||
|
|
||||||
class Environment(simpy.Environment):
|
class Environment(Model):
|
||||||
"""
|
"""
|
||||||
The environment is key in a simulation. It contains the network topology,
|
The environment is key in a simulation. It contains the network topology,
|
||||||
a reference to network and environment agents, as well as the environment
|
a reference to network and environment agents, as well as the environment
|
||||||
@ -39,25 +40,41 @@ class Environment(simpy.Environment):
|
|||||||
states=None,
|
states=None,
|
||||||
default_state=None,
|
default_state=None,
|
||||||
interval=1,
|
interval=1,
|
||||||
|
network_params=None,
|
||||||
seed=None,
|
seed=None,
|
||||||
topology=None,
|
topology=None,
|
||||||
|
schedule=None,
|
||||||
initial_time=0,
|
initial_time=0,
|
||||||
**environment_params):
|
environment_params=None,
|
||||||
|
dir_path=None,
|
||||||
|
**kwargs):
|
||||||
|
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.schedule = schedule
|
||||||
|
if schedule is None:
|
||||||
|
self.schedule = time.TimedActivation()
|
||||||
|
|
||||||
self.name = name or 'UnnamedEnvironment'
|
self.name = name or 'UnnamedEnvironment'
|
||||||
seed = seed or time.time()
|
seed = seed or current_time()
|
||||||
random.seed(seed)
|
random.seed(seed)
|
||||||
if isinstance(states, list):
|
if isinstance(states, list):
|
||||||
states = dict(enumerate(states))
|
states = dict(enumerate(states))
|
||||||
self.states = deepcopy(states) if states else {}
|
self.states = deepcopy(states) if states else {}
|
||||||
self.default_state = deepcopy(default_state) or {}
|
self.default_state = deepcopy(default_state) or {}
|
||||||
|
|
||||||
|
if topology is None:
|
||||||
|
network_params = network_params or {}
|
||||||
|
topology = serialization.load_network(network_params,
|
||||||
|
dir_path=dir_path)
|
||||||
if not topology:
|
if not topology:
|
||||||
topology = nx.Graph()
|
topology = nx.Graph()
|
||||||
self.G = nx.Graph(topology)
|
self.G = nx.Graph(topology)
|
||||||
|
|
||||||
super().__init__(initial_time=initial_time)
|
|
||||||
self.environment_params = environment_params
|
self.environment_params = environment_params or {}
|
||||||
|
self.environment_params.update(kwargs)
|
||||||
|
|
||||||
self._env_agents = {}
|
self._env_agents = {}
|
||||||
self.interval = interval
|
self.interval = interval
|
||||||
@ -66,8 +83,26 @@ class Environment(simpy.Environment):
|
|||||||
self['SEED'] = seed
|
self['SEED'] = seed
|
||||||
# Add environment agents first, so their events get
|
# Add environment agents first, so their events get
|
||||||
# executed before network agents
|
# executed before network agents
|
||||||
self.environment_agents = environment_agents or []
|
|
||||||
self.network_agents = network_agents or []
|
|
||||||
|
if network_agents:
|
||||||
|
distro = agents.calculate_distribution(network_agents)
|
||||||
|
self.network_agents = agents._convert_agent_types(distro)
|
||||||
|
else:
|
||||||
|
self.network_agents = []
|
||||||
|
|
||||||
|
environment_agents = environment_agents or []
|
||||||
|
if environment_agents:
|
||||||
|
distro = agents.calculate_distribution(environment_agents)
|
||||||
|
environment_agents = agents._convert_agent_types(distro)
|
||||||
|
self.environment_agents = environment_agents
|
||||||
|
|
||||||
|
|
||||||
|
@property
|
||||||
|
def now(self):
|
||||||
|
if self.schedule:
|
||||||
|
return self.schedule.time
|
||||||
|
raise Exception('The environment has not been scheduled, so it has no sense of time')
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def agents(self):
|
def agents(self):
|
||||||
@ -81,15 +116,9 @@ class Environment(simpy.Environment):
|
|||||||
|
|
||||||
@environment_agents.setter
|
@environment_agents.setter
|
||||||
def environment_agents(self, environment_agents):
|
def environment_agents(self, environment_agents):
|
||||||
# Set up environmental agent
|
self._environment_agents = environment_agents
|
||||||
self._env_agents = {}
|
|
||||||
for item in environment_agents:
|
self._env_agents = agents._definition_to_dict(definition=environment_agents)
|
||||||
kwargs = deepcopy(item)
|
|
||||||
atype = kwargs.pop('agent_type')
|
|
||||||
kwargs['agent_id'] = kwargs.get('agent_id', atype.__name__)
|
|
||||||
kwargs['state'] = kwargs.get('state', {})
|
|
||||||
a = atype(environment=self, **kwargs)
|
|
||||||
self._env_agents[a.id] = a
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def network_agents(self):
|
def network_agents(self):
|
||||||
@ -102,9 +131,9 @@ class Environment(simpy.Environment):
|
|||||||
def network_agents(self, network_agents):
|
def network_agents(self, network_agents):
|
||||||
self._network_agents = network_agents
|
self._network_agents = network_agents
|
||||||
for ix in self.G.nodes():
|
for ix in self.G.nodes():
|
||||||
self.init_agent(ix, agent_distribution=network_agents)
|
self.init_agent(ix, agent_definitions=network_agents)
|
||||||
|
|
||||||
def init_agent(self, agent_id, agent_distribution):
|
def init_agent(self, agent_id, agent_definitions):
|
||||||
node = self.G.nodes[agent_id]
|
node = self.G.nodes[agent_id]
|
||||||
init = False
|
init = False
|
||||||
state = dict(node)
|
state = dict(node)
|
||||||
@ -119,8 +148,8 @@ class Environment(simpy.Environment):
|
|||||||
|
|
||||||
if agent_type:
|
if agent_type:
|
||||||
agent_type = agents.deserialize_type(agent_type)
|
agent_type = agents.deserialize_type(agent_type)
|
||||||
elif agent_distribution:
|
elif agent_definitions:
|
||||||
agent_type, state = agents._agent_from_distribution(agent_distribution, agent_id=agent_id)
|
agent_type, state = agents._agent_from_definition(agent_definitions, unique_id=agent_id)
|
||||||
else:
|
else:
|
||||||
serialization.logger.debug('Skipping node {}'.format(agent_id))
|
serialization.logger.debug('Skipping node {}'.format(agent_id))
|
||||||
return
|
return
|
||||||
@ -136,8 +165,8 @@ class Environment(simpy.Environment):
|
|||||||
a = None
|
a = None
|
||||||
if agent_type:
|
if agent_type:
|
||||||
state = defstate
|
state = defstate
|
||||||
a = agent_type(environment=self,
|
a = agent_type(model=self,
|
||||||
agent_id=agent_id,
|
unique_id=agent_id,
|
||||||
state=state)
|
state=state)
|
||||||
node['agent'] = a
|
node['agent'] = a
|
||||||
return a
|
return a
|
||||||
@ -159,30 +188,18 @@ class Environment(simpy.Environment):
|
|||||||
|
|
||||||
def run(self, until, *args, **kwargs):
|
def run(self, until, *args, **kwargs):
|
||||||
self._save_state()
|
self._save_state()
|
||||||
super().run(until, *args, **kwargs)
|
for agent in self.agents:
|
||||||
|
self.schedule.add(agent)
|
||||||
|
|
||||||
|
while self.schedule.next_time <= until and not math.isinf(self.schedule.next_time):
|
||||||
|
self.schedule.step(until=until)
|
||||||
|
utils.logger.debug(f'Simulation step {self.schedule.time}/{until}. Next: {self.schedule.next_time}')
|
||||||
self._history.flush_cache()
|
self._history.flush_cache()
|
||||||
|
|
||||||
def _save_state(self, now=None):
|
def _save_state(self, now=None):
|
||||||
serialization.logger.debug('Saving state @{}'.format(self.now))
|
serialization.logger.debug('Saving state @{}'.format(self.now))
|
||||||
self._history.save_records(self.state_to_tuples(now=now))
|
self._history.save_records(self.state_to_tuples(now=now))
|
||||||
|
|
||||||
def save_state(self):
|
|
||||||
'''
|
|
||||||
:DEPRECATED:
|
|
||||||
Periodically save the state of the environment and the agents.
|
|
||||||
'''
|
|
||||||
self._save_state()
|
|
||||||
while self.peek() != simpy.core.Infinity:
|
|
||||||
delay = max(self.peek() - self.now, self.interval)
|
|
||||||
serialization.logger.debug('Step: {}'.format(self.now))
|
|
||||||
ev = self.event()
|
|
||||||
ev._ok = True
|
|
||||||
# Schedule the event with minimum priority so
|
|
||||||
# that it executes before all agents
|
|
||||||
self.schedule(ev, -999, delay)
|
|
||||||
yield ev
|
|
||||||
self._save_state()
|
|
||||||
|
|
||||||
def __getitem__(self, key):
|
def __getitem__(self, key):
|
||||||
if isinstance(key, tuple):
|
if isinstance(key, tuple):
|
||||||
self._history.flush_cache()
|
self._history.flush_cache()
|
||||||
@ -329,7 +346,7 @@ class Environment(simpy.Environment):
|
|||||||
state['G'] = json_graph.node_link_data(self.G)
|
state['G'] = json_graph.node_link_data(self.G)
|
||||||
state['environment_agents'] = self._env_agents
|
state['environment_agents'] = self._env_agents
|
||||||
state['history'] = self._history
|
state['history'] = self._history
|
||||||
state['_now'] = self._now
|
state['schedule'] = self.schedule
|
||||||
return state
|
return state
|
||||||
|
|
||||||
def __setstate__(self, state):
|
def __setstate__(self, state):
|
||||||
@ -338,7 +355,8 @@ class Environment(simpy.Environment):
|
|||||||
self._env_agents = state['environment_agents']
|
self._env_agents = state['environment_agents']
|
||||||
self.G = json_graph.node_link_graph(state['G'])
|
self.G = json_graph.node_link_graph(state['G'])
|
||||||
self._history = state['history']
|
self._history = state['history']
|
||||||
self._now = state['_now']
|
# self._env = None
|
||||||
|
self.schedule = state['schedule']
|
||||||
self._queue = []
|
self._queue = []
|
||||||
|
|
||||||
|
|
||||||
|
@ -52,7 +52,7 @@ class History:
|
|||||||
|
|
||||||
with self.db:
|
with self.db:
|
||||||
logger.debug('Creating database {}'.format(self.db_path))
|
logger.debug('Creating database {}'.format(self.db_path))
|
||||||
self.db.execute('''CREATE TABLE IF NOT EXISTS history (agent_id text, t_step int, key text, value text)''')
|
self.db.execute('''CREATE TABLE IF NOT EXISTS history (agent_id text, t_step real, key text, value text)''')
|
||||||
self.db.execute('''CREATE TABLE IF NOT EXISTS value_types (key text, value_type text)''')
|
self.db.execute('''CREATE TABLE IF NOT EXISTS value_types (key text, value_type text)''')
|
||||||
self.db.execute('''CREATE TABLE IF NOT EXISTS stats (trial_id text)''')
|
self.db.execute('''CREATE TABLE IF NOT EXISTS stats (trial_id text)''')
|
||||||
self.db.execute('''CREATE UNIQUE INDEX IF NOT EXISTS idx_history ON history (agent_id, t_step, key);''')
|
self.db.execute('''CREATE UNIQUE INDEX IF NOT EXISTS idx_history ON history (agent_id, t_step, key);''')
|
||||||
@ -103,7 +103,7 @@ class History:
|
|||||||
dtype = 'real'
|
dtype = 'real'
|
||||||
int(value)
|
int(value)
|
||||||
dtype = 'int'
|
dtype = 'int'
|
||||||
except ValueError:
|
except (ValueError, OverflowError):
|
||||||
pass
|
pass
|
||||||
self.db.execute('ALTER TABLE stats ADD "{}" "{}"'.format(column, dtype))
|
self.db.execute('ALTER TABLE stats ADD "{}" "{}"'.format(column, dtype))
|
||||||
self._stats_columns.append(column)
|
self._stats_columns.append(column)
|
||||||
@ -167,6 +167,7 @@ class History:
|
|||||||
with self.db:
|
with self.db:
|
||||||
self.db.execute("replace into value_types (key, value_type) values (?, ?)", (key, name))
|
self.db.execute("replace into value_types (key, value_type) values (?, ?)", (key, name))
|
||||||
value = self._dtypes[key][1](value)
|
value = self._dtypes[key][1](value)
|
||||||
|
|
||||||
self._tups.append(Record(agent_id=agent_id,
|
self._tups.append(Record(agent_id=agent_id,
|
||||||
t_step=t_step,
|
t_step=t_step,
|
||||||
key=key,
|
key=key,
|
||||||
@ -183,9 +184,9 @@ class History:
|
|||||||
raise Exception('DB in readonly mode')
|
raise Exception('DB in readonly mode')
|
||||||
logger.debug('Flushing cache {}'.format(self.db_path))
|
logger.debug('Flushing cache {}'.format(self.db_path))
|
||||||
with self.db:
|
with self.db:
|
||||||
for rec in self._tups:
|
self.db.executemany("replace into history(agent_id, t_step, key, value) values (?, ?, ?, ?)", self._tups)
|
||||||
self.db.execute("replace into history(agent_id, t_step, key, value) values (?, ?, ?, ?)", (rec.agent_id, rec.t_step, rec.key, rec.value))
|
# (rec.agent_id, rec.t_step, rec.key, rec.value))
|
||||||
self._tups = list()
|
self._tups.clear()
|
||||||
|
|
||||||
def to_tuples(self):
|
def to_tuples(self):
|
||||||
self.flush_cache()
|
self.flush_cache()
|
||||||
@ -209,6 +210,7 @@ class History:
|
|||||||
self._dtypes[k] = (v, serializer, deserializer)
|
self._dtypes[k] = (v, serializer, deserializer)
|
||||||
|
|
||||||
def __getitem__(self, key):
|
def __getitem__(self, key):
|
||||||
|
# raise NotImplementedError()
|
||||||
self.flush_cache()
|
self.flush_cache()
|
||||||
key = Key(*key)
|
key = Key(*key)
|
||||||
agent_ids = [key.agent_id] if key.agent_id is not None else []
|
agent_ids = [key.agent_id] if key.agent_id is not None else []
|
||||||
@ -223,7 +225,7 @@ class History:
|
|||||||
return r.value()
|
return r.value()
|
||||||
return r
|
return r
|
||||||
|
|
||||||
def read_sql(self, keys=None, agent_ids=None, t_steps=None, convert_types=False, limit=-1):
|
def read_sql(self, keys=None, agent_ids=None, not_agent_ids=None, t_steps=None, convert_types=False, limit=-1):
|
||||||
|
|
||||||
self._read_types()
|
self._read_types()
|
||||||
|
|
||||||
@ -233,7 +235,8 @@ class History:
|
|||||||
return ",".join(map(lambda x: "\'{}\'".format(x), v))
|
return ",".join(map(lambda x: "\'{}\'".format(x), v))
|
||||||
|
|
||||||
filters = [("key in ({})".format(escape_and_join(keys)), keys),
|
filters = [("key in ({})".format(escape_and_join(keys)), keys),
|
||||||
("agent_id in ({})".format(escape_and_join(agent_ids)), agent_ids)
|
("agent_id in ({})".format(escape_and_join(agent_ids)), agent_ids),
|
||||||
|
("agent_id not in ({})".format(escape_and_join(not_agent_ids)), not_agent_ids)
|
||||||
]
|
]
|
||||||
filters = list(k[0] for k in filters if k[1])
|
filters = list(k[0] for k in filters if k[1])
|
||||||
|
|
||||||
|
@ -13,7 +13,6 @@ from jinja2 import Template
|
|||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger('soil')
|
logger = logging.getLogger('soil')
|
||||||
logger.setLevel(logging.INFO)
|
|
||||||
|
|
||||||
|
|
||||||
def load_network(network_params, dir_path=None):
|
def load_network(network_params, dir_path=None):
|
||||||
@ -51,6 +50,9 @@ def load_network(network_params, dir_path=None):
|
|||||||
|
|
||||||
|
|
||||||
def load_file(infile):
|
def load_file(infile):
|
||||||
|
folder = os.path.dirname(infile)
|
||||||
|
if folder not in sys.path:
|
||||||
|
sys.path.append(folder)
|
||||||
with open(infile, 'r') as f:
|
with open(infile, 'r') as f:
|
||||||
return list(chain.from_iterable(map(expand_template, load_string(f))))
|
return list(chain.from_iterable(map(expand_template, load_string(f))))
|
||||||
|
|
||||||
|
@ -143,7 +143,7 @@ class Simulation:
|
|||||||
return list(self.run_gen(*args, **kwargs))
|
return list(self.run_gen(*args, **kwargs))
|
||||||
|
|
||||||
def _run_sync_or_async(self, parallel=False, *args, **kwargs):
|
def _run_sync_or_async(self, parallel=False, *args, **kwargs):
|
||||||
if parallel:
|
if parallel and not os.environ.get('SENPY_DEBUG', None):
|
||||||
p = Pool()
|
p = Pool()
|
||||||
func = partial(self.run_trial_exceptions,
|
func = partial(self.run_trial_exceptions,
|
||||||
*args,
|
*args,
|
||||||
@ -226,12 +226,14 @@ class Simulation:
|
|||||||
opts.update({
|
opts.update({
|
||||||
'name': trial_id,
|
'name': trial_id,
|
||||||
'topology': self.topology.copy(),
|
'topology': self.topology.copy(),
|
||||||
|
'network_params': self.network_params,
|
||||||
'seed': '{}_trial_{}'.format(self.seed, trial_id),
|
'seed': '{}_trial_{}'.format(self.seed, trial_id),
|
||||||
'initial_time': 0,
|
'initial_time': 0,
|
||||||
'interval': self.interval,
|
'interval': self.interval,
|
||||||
'network_agents': self.network_agents,
|
'network_agents': self.network_agents,
|
||||||
'initial_time': 0,
|
'initial_time': 0,
|
||||||
'states': self.states,
|
'states': self.states,
|
||||||
|
'dir_path': self.dir_path,
|
||||||
'default_state': self.default_state,
|
'default_state': self.default_state,
|
||||||
'environment_agents': self.environment_agents,
|
'environment_agents': self.environment_agents,
|
||||||
})
|
})
|
||||||
@ -304,9 +306,9 @@ class Simulation:
|
|||||||
if k[0] != '_':
|
if k[0] != '_':
|
||||||
state[k] = v
|
state[k] = v
|
||||||
state['topology'] = json_graph.node_link_data(self.topology)
|
state['topology'] = json_graph.node_link_data(self.topology)
|
||||||
state['network_agents'] = agents.serialize_distribution(self.network_agents,
|
state['network_agents'] = agents.serialize_definition(self.network_agents,
|
||||||
known_modules = [])
|
known_modules = [])
|
||||||
state['environment_agents'] = agents.serialize_distribution(self.environment_agents,
|
state['environment_agents'] = agents.serialize_definition(self.environment_agents,
|
||||||
known_modules = [])
|
known_modules = [])
|
||||||
state['environment_class'] = serialization.serialize(self.environment_class,
|
state['environment_class'] = serialization.serialize(self.environment_class,
|
||||||
known_modules=['soil.environment'])[1] # func, name
|
known_modules=['soil.environment'])[1] # func, name
|
||||||
@ -325,7 +327,6 @@ class Simulation:
|
|||||||
known_modules=[self.load_module])
|
known_modules=[self.load_module])
|
||||||
self.environment_class = serialization.deserialize(self.environment_class,
|
self.environment_class = serialization.deserialize(self.environment_class,
|
||||||
known_modules=[self.load_module, 'soil.environment', ]) # func, name
|
known_modules=[self.load_module, 'soil.environment', ]) # func, name
|
||||||
return state
|
|
||||||
|
|
||||||
|
|
||||||
def all_from_config(config):
|
def all_from_config(config):
|
||||||
|
84
soil/time.py
Normal file
84
soil/time.py
Normal file
@ -0,0 +1,84 @@
|
|||||||
|
from mesa.time import BaseScheduler
|
||||||
|
from queue import Empty
|
||||||
|
from heapq import heappush, heappop
|
||||||
|
import math
|
||||||
|
from .utils import logger
|
||||||
|
from mesa import Agent
|
||||||
|
|
||||||
|
|
||||||
|
class When:
|
||||||
|
def __init__(self, time):
|
||||||
|
self._time = float(time)
|
||||||
|
|
||||||
|
def abs(self, time):
|
||||||
|
return self._time
|
||||||
|
|
||||||
|
|
||||||
|
class Delta:
|
||||||
|
def __init__(self, delta):
|
||||||
|
self._delta = delta
|
||||||
|
|
||||||
|
def abs(self, time):
|
||||||
|
return time + self._delta
|
||||||
|
|
||||||
|
|
||||||
|
class TimedActivation(BaseScheduler):
|
||||||
|
"""A scheduler which activates each agent when the agent requests.
|
||||||
|
In each activation, each agent will update its 'next_time'.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super().__init__(self)
|
||||||
|
self._queue = []
|
||||||
|
self.next_time = 0
|
||||||
|
|
||||||
|
def add(self, agent: Agent):
|
||||||
|
if agent.unique_id not in self._agents:
|
||||||
|
heappush(self._queue, (self.time, agent.unique_id))
|
||||||
|
super().add(agent)
|
||||||
|
|
||||||
|
def step(self, until: float =float('inf')) -> None:
|
||||||
|
"""
|
||||||
|
Executes agents in order, one at a time. After each step,
|
||||||
|
an agent will signal when it wants to be scheduled next.
|
||||||
|
"""
|
||||||
|
|
||||||
|
when = None
|
||||||
|
agent_id = None
|
||||||
|
unsched = []
|
||||||
|
until = until or float('inf')
|
||||||
|
|
||||||
|
if not self._queue:
|
||||||
|
self.time = until
|
||||||
|
self.next_time = float('inf')
|
||||||
|
return
|
||||||
|
|
||||||
|
(when, agent_id) = self._queue[0]
|
||||||
|
|
||||||
|
if until and when > until:
|
||||||
|
self.time = until
|
||||||
|
self.next_time = when
|
||||||
|
return
|
||||||
|
|
||||||
|
self.time = when
|
||||||
|
next_time = float("inf")
|
||||||
|
|
||||||
|
while when == self.time:
|
||||||
|
heappop(self._queue)
|
||||||
|
logger.debug(f'Stepping agent {agent_id}')
|
||||||
|
when = (self._agents[agent_id].step() or Delta(1)).abs(self.time)
|
||||||
|
heappush(self._queue, (when, agent_id))
|
||||||
|
if when < next_time:
|
||||||
|
next_time = when
|
||||||
|
|
||||||
|
if not self._queue or self._queue[0][0] > self.time:
|
||||||
|
agent_id = None
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
(when, agent_id) = self._queue[0]
|
||||||
|
|
||||||
|
if when and when < self.time:
|
||||||
|
raise Exception("Invalid scheduling time")
|
||||||
|
|
||||||
|
self.next_time = next_time
|
||||||
|
self.steps += 1
|
@ -7,8 +7,8 @@ from shutil import copyfile
|
|||||||
from contextlib import contextmanager
|
from contextlib import contextmanager
|
||||||
|
|
||||||
logger = logging.getLogger('soil')
|
logger = logging.getLogger('soil')
|
||||||
logging.basicConfig()
|
# logging.basicConfig()
|
||||||
logger.setLevel(logging.INFO)
|
# logger.setLevel(logging.INFO)
|
||||||
|
|
||||||
|
|
||||||
@contextmanager
|
@contextmanager
|
||||||
|
5
soil/visualization.py
Normal file
5
soil/visualization.py
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
from mesa.visualization.UserParam import UserSettableParameter
|
||||||
|
|
||||||
|
class UserSettableParameter(UserSettableParameter):
|
||||||
|
def __str__(self):
|
||||||
|
return self.value
|
@ -1 +1,4 @@
|
|||||||
pytest
|
pytest
|
||||||
|
mesa>=0.8.9
|
||||||
|
scipy>=1.3
|
||||||
|
tornado
|
||||||
|
@ -21,11 +21,13 @@ class Ping(agents.FSM):
|
|||||||
@agents.default_state
|
@agents.default_state
|
||||||
@agents.state
|
@agents.state
|
||||||
def even(self):
|
def even(self):
|
||||||
|
self.debug(f'Even {self["count"]}')
|
||||||
self['count'] += 1
|
self['count'] += 1
|
||||||
return self.odd
|
return self.odd
|
||||||
|
|
||||||
@agents.state
|
@agents.state
|
||||||
def odd(self):
|
def odd(self):
|
||||||
|
self.debug(f'Odd {self["count"]}')
|
||||||
self['count'] += 1
|
self['count'] += 1
|
||||||
return self.even
|
return self.even
|
||||||
|
|
||||||
@ -82,8 +84,7 @@ class TestAnalysis(TestCase):
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
res_mean = analysis.get_value(df, 'count', aggfunc=np.mean)
|
res_mean = analysis.get_value(df, 'count', aggfunc=np.mean)
|
||||||
assert res_mean['count'].iloc[0] == 1
|
assert res_mean['count'].iloc[15] == (16+8)/2
|
||||||
|
|
||||||
res_total = analysis.get_value(df)
|
|
||||||
|
|
||||||
|
res_total = analysis.get_majority(df)
|
||||||
res_total['SEED'].iloc[0] == self.env['SEED']
|
res_total['SEED'].iloc[0] == self.env['SEED']
|
||||||
|
@ -1,203 +0,0 @@
|
|||||||
from unittest import TestCase
|
|
||||||
|
|
||||||
import os
|
|
||||||
import shutil
|
|
||||||
from glob import glob
|
|
||||||
|
|
||||||
from soil import history
|
|
||||||
from soil import utils
|
|
||||||
|
|
||||||
|
|
||||||
ROOT = os.path.abspath(os.path.dirname(__file__))
|
|
||||||
DBROOT = os.path.join(ROOT, 'testdb')
|
|
||||||
|
|
||||||
|
|
||||||
class TestHistory(TestCase):
|
|
||||||
|
|
||||||
def setUp(self):
|
|
||||||
if not os.path.exists(DBROOT):
|
|
||||||
os.makedirs(DBROOT)
|
|
||||||
|
|
||||||
def tearDown(self):
|
|
||||||
if os.path.exists(DBROOT):
|
|
||||||
shutil.rmtree(DBROOT)
|
|
||||||
|
|
||||||
def test_history(self):
|
|
||||||
"""
|
|
||||||
"""
|
|
||||||
tuples = (
|
|
||||||
('a_0', 0, 'id', 'h'),
|
|
||||||
('a_0', 1, 'id', 'e'),
|
|
||||||
('a_0', 2, 'id', 'l'),
|
|
||||||
('a_0', 3, 'id', 'l'),
|
|
||||||
('a_0', 4, 'id', 'o'),
|
|
||||||
('a_1', 0, 'id', 'v'),
|
|
||||||
('a_1', 1, 'id', 'a'),
|
|
||||||
('a_1', 2, 'id', 'l'),
|
|
||||||
('a_1', 3, 'id', 'u'),
|
|
||||||
('a_1', 4, 'id', 'e'),
|
|
||||||
('env', 1, 'prob', 1),
|
|
||||||
('env', 3, 'prob', 2),
|
|
||||||
('env', 5, 'prob', 3),
|
|
||||||
('a_2', 7, 'finished', True),
|
|
||||||
)
|
|
||||||
h = history.History()
|
|
||||||
h.save_tuples(tuples)
|
|
||||||
# assert h['env', 0, 'prob'] == 0
|
|
||||||
for i in range(1, 7):
|
|
||||||
assert h['env', i, 'prob'] == ((i-1)//2)+1
|
|
||||||
|
|
||||||
|
|
||||||
for i, k in zip(range(5), 'hello'):
|
|
||||||
assert h['a_0', i, 'id'] == k
|
|
||||||
for record, value in zip(h['a_0', None, 'id'], 'hello'):
|
|
||||||
t_step, val = record
|
|
||||||
assert val == value
|
|
||||||
|
|
||||||
for i, k in zip(range(5), 'value'):
|
|
||||||
assert h['a_1', i, 'id'] == k
|
|
||||||
for i in range(5, 8):
|
|
||||||
assert h['a_1', i, 'id'] == 'e'
|
|
||||||
for i in range(7):
|
|
||||||
assert h['a_2', i, 'finished'] == False
|
|
||||||
assert h['a_2', 7, 'finished']
|
|
||||||
|
|
||||||
def test_history_gen(self):
|
|
||||||
"""
|
|
||||||
"""
|
|
||||||
tuples = (
|
|
||||||
('a_1', 0, 'id', 'v'),
|
|
||||||
('a_1', 1, 'id', 'a'),
|
|
||||||
('a_1', 2, 'id', 'l'),
|
|
||||||
('a_1', 3, 'id', 'u'),
|
|
||||||
('a_1', 4, 'id', 'e'),
|
|
||||||
('env', 1, 'prob', 1),
|
|
||||||
('env', 2, 'prob', 2),
|
|
||||||
('env', 3, 'prob', 3),
|
|
||||||
('a_2', 7, 'finished', True),
|
|
||||||
)
|
|
||||||
h = history.History()
|
|
||||||
h.save_tuples(tuples)
|
|
||||||
for t_step, key, value in h['env', None, None]:
|
|
||||||
assert t_step == value
|
|
||||||
assert key == 'prob'
|
|
||||||
|
|
||||||
records = list(h[None, 7, None])
|
|
||||||
assert len(records) == 3
|
|
||||||
for i in records:
|
|
||||||
agent_id, key, value = i
|
|
||||||
if agent_id == 'a_1':
|
|
||||||
assert key == 'id'
|
|
||||||
assert value == 'e'
|
|
||||||
elif agent_id == 'a_2':
|
|
||||||
assert key == 'finished'
|
|
||||||
assert value
|
|
||||||
else:
|
|
||||||
assert key == 'prob'
|
|
||||||
assert value == 3
|
|
||||||
|
|
||||||
records = h['a_1', 7, None]
|
|
||||||
assert records['id'] == 'e'
|
|
||||||
|
|
||||||
def test_history_file(self):
|
|
||||||
"""
|
|
||||||
History should be saved to a file
|
|
||||||
"""
|
|
||||||
tuples = (
|
|
||||||
('a_1', 0, 'id', 'v'),
|
|
||||||
('a_1', 1, 'id', 'a'),
|
|
||||||
('a_1', 2, 'id', 'l'),
|
|
||||||
('a_1', 3, 'id', 'u'),
|
|
||||||
('a_1', 4, 'id', 'e'),
|
|
||||||
('env', 1, 'prob', 1),
|
|
||||||
('env', 2, 'prob', 2),
|
|
||||||
('env', 3, 'prob', 3),
|
|
||||||
('a_2', 7, 'finished', True),
|
|
||||||
)
|
|
||||||
db_path = os.path.join(DBROOT, 'test')
|
|
||||||
h = history.History(db_path=db_path)
|
|
||||||
h.save_tuples(tuples)
|
|
||||||
h.flush_cache()
|
|
||||||
assert os.path.exists(db_path)
|
|
||||||
|
|
||||||
# Recover the data
|
|
||||||
recovered = history.History(db_path=db_path)
|
|
||||||
assert recovered['a_1', 0, 'id'] == 'v'
|
|
||||||
assert recovered['a_1', 4, 'id'] == 'e'
|
|
||||||
|
|
||||||
# Using backup=True should create a backup copy, and initialize an empty history
|
|
||||||
newhistory = history.History(db_path=db_path, backup=True)
|
|
||||||
backuppaths = glob(db_path + '.backup*.sqlite')
|
|
||||||
assert len(backuppaths) == 1
|
|
||||||
backuppath = backuppaths[0]
|
|
||||||
assert newhistory.db_path == h.db_path
|
|
||||||
assert os.path.exists(backuppath)
|
|
||||||
assert len(newhistory[None, None, None]) == 0
|
|
||||||
|
|
||||||
def test_history_tuples(self):
|
|
||||||
"""
|
|
||||||
The data recovered should be equal to the one recorded.
|
|
||||||
"""
|
|
||||||
tuples = (
|
|
||||||
('a_1', 0, 'id', 'v'),
|
|
||||||
('a_1', 1, 'id', 'a'),
|
|
||||||
('a_1', 2, 'id', 'l'),
|
|
||||||
('a_1', 3, 'id', 'u'),
|
|
||||||
('a_1', 4, 'id', 'e'),
|
|
||||||
('env', 1, 'prob', 1),
|
|
||||||
('env', 2, 'prob', 2),
|
|
||||||
('env', 3, 'prob', 3),
|
|
||||||
('a_2', 7, 'finished', True),
|
|
||||||
)
|
|
||||||
h = history.History()
|
|
||||||
h.save_tuples(tuples)
|
|
||||||
recovered = list(h.to_tuples())
|
|
||||||
assert recovered
|
|
||||||
for i in recovered:
|
|
||||||
assert i in tuples
|
|
||||||
|
|
||||||
def test_stats(self):
|
|
||||||
"""
|
|
||||||
The data recovered should be equal to the one recorded.
|
|
||||||
"""
|
|
||||||
tuples = (
|
|
||||||
('a_1', 0, 'id', 'v'),
|
|
||||||
('a_1', 1, 'id', 'a'),
|
|
||||||
('a_1', 2, 'id', 'l'),
|
|
||||||
('a_1', 3, 'id', 'u'),
|
|
||||||
('a_1', 4, 'id', 'e'),
|
|
||||||
('env', 1, 'prob', 1),
|
|
||||||
('env', 2, 'prob', 2),
|
|
||||||
('env', 3, 'prob', 3),
|
|
||||||
('a_2', 7, 'finished', True),
|
|
||||||
)
|
|
||||||
stat_tuples = [
|
|
||||||
{'num_infected': 5, 'runtime': 0.2},
|
|
||||||
{'num_infected': 5, 'runtime': 0.2},
|
|
||||||
{'new': '40'},
|
|
||||||
]
|
|
||||||
h = history.History()
|
|
||||||
h.save_tuples(tuples)
|
|
||||||
for stat in stat_tuples:
|
|
||||||
h.save_stats(stat)
|
|
||||||
recovered = h.get_stats()
|
|
||||||
assert recovered
|
|
||||||
assert recovered[0]['num_infected'] == 5
|
|
||||||
assert recovered[1]['runtime'] == 0.2
|
|
||||||
assert recovered[2]['new'] == '40'
|
|
||||||
|
|
||||||
def test_unflatten(self):
|
|
||||||
ex = {'count.neighbors.3': 4,
|
|
||||||
'count.times.2': 4,
|
|
||||||
'count.total.4': 4,
|
|
||||||
'mean.neighbors': 3,
|
|
||||||
'mean.times': 2,
|
|
||||||
'mean.total': 4,
|
|
||||||
't_step': 2,
|
|
||||||
'trial_id': 'exporter_sim_trial_1605817956-4475424'}
|
|
||||||
res = utils.unflatten_dict(ex)
|
|
||||||
|
|
||||||
assert 'count' in res
|
|
||||||
assert 'mean' in res
|
|
||||||
assert 't_step' in res
|
|
||||||
assert 'trial_id' in res
|
|
@ -126,7 +126,7 @@ class TestMain(TestCase):
|
|||||||
env = s.run_simulation(dry_run=True)[0]
|
env = s.run_simulation(dry_run=True)[0]
|
||||||
for agent in env.network_agents:
|
for agent in env.network_agents:
|
||||||
last = 0
|
last = 0
|
||||||
assert len(agent[None, None]) == 10
|
assert len(agent[None, None]) == 11
|
||||||
for step, total in sorted(agent['total', None]):
|
for step, total in sorted(agent['total', None]):
|
||||||
assert total == last + 2
|
assert total == last + 2
|
||||||
last = total
|
last = total
|
||||||
@ -198,7 +198,7 @@ class TestMain(TestCase):
|
|||||||
"""
|
"""
|
||||||
config = serialization.load_file(join(EXAMPLES, 'complete.yml'))[0]
|
config = serialization.load_file(join(EXAMPLES, 'complete.yml'))[0]
|
||||||
s = simulation.from_config(config)
|
s = simulation.from_config(config)
|
||||||
for i in range(5):
|
|
||||||
s.run_simulation(dry_run=True)
|
s.run_simulation(dry_run=True)
|
||||||
nconfig = s.to_dict()
|
nconfig = s.to_dict()
|
||||||
del nconfig['topology']
|
del nconfig['topology']
|
||||||
@ -211,7 +211,7 @@ class TestMain(TestCase):
|
|||||||
res = list(env.history_to_tuples())
|
res = list(env.history_to_tuples())
|
||||||
assert len(res) == len(env.environment_params)
|
assert len(res) == len(env.environment_params)
|
||||||
|
|
||||||
env._now = 1
|
env.schedule.time = 1
|
||||||
env['test'] = 'second_value'
|
env['test'] = 'second_value'
|
||||||
res = list(env.history_to_tuples())
|
res = list(env.history_to_tuples())
|
||||||
|
|
||||||
@ -281,7 +281,7 @@ class TestMain(TestCase):
|
|||||||
'weight': 2
|
'weight': 2
|
||||||
},
|
},
|
||||||
]
|
]
|
||||||
converted = agents.deserialize_distribution(agent_distro)
|
converted = agents.deserialize_definition(agent_distro)
|
||||||
assert converted[0]['agent_type'] == agents.CounterModel
|
assert converted[0]['agent_type'] == agents.CounterModel
|
||||||
assert converted[1]['agent_type'] == CustomAgent
|
assert converted[1]['agent_type'] == CustomAgent
|
||||||
pickle.dumps(converted)
|
pickle.dumps(converted)
|
||||||
@ -297,14 +297,14 @@ class TestMain(TestCase):
|
|||||||
'weight': 2
|
'weight': 2
|
||||||
},
|
},
|
||||||
]
|
]
|
||||||
converted = agents.serialize_distribution(agent_distro)
|
converted = agents.serialize_definition(agent_distro)
|
||||||
assert converted[0]['agent_type'] == 'CounterModel'
|
assert converted[0]['agent_type'] == 'CounterModel'
|
||||||
assert converted[1]['agent_type'] == 'test_main.CustomAgent'
|
assert converted[1]['agent_type'] == 'test_main.CustomAgent'
|
||||||
pickle.dumps(converted)
|
pickle.dumps(converted)
|
||||||
|
|
||||||
def test_pickle_agent_environment(self):
|
def test_pickle_agent_environment(self):
|
||||||
env = Environment(name='Test')
|
env = Environment(name='Test')
|
||||||
a = agents.BaseAgent(environment=env, agent_id=25)
|
a = agents.BaseAgent(model=env, unique_id=25)
|
||||||
|
|
||||||
a['key'] = 'test'
|
a['key'] = 'test'
|
||||||
|
|
||||||
@ -345,7 +345,7 @@ class TestMain(TestCase):
|
|||||||
|
|
||||||
def test_until(self):
|
def test_until(self):
|
||||||
config = {
|
config = {
|
||||||
'name': 'exporter_sim',
|
'name': 'until_sim',
|
||||||
'network_params': {},
|
'network_params': {},
|
||||||
'agent_type': 'CounterModel',
|
'agent_type': 'CounterModel',
|
||||||
'max_time': 2,
|
'max_time': 2,
|
||||||
|
69
tests/test_mesa.py
Normal file
69
tests/test_mesa.py
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
'''
|
||||||
|
Mesa-SOIL integration tests
|
||||||
|
|
||||||
|
We have to test that:
|
||||||
|
- Mesa agents can be used in SOIL
|
||||||
|
- Simplified soil agents can be used in mesa simulations
|
||||||
|
- Mesa and soil agents can interact in a simulation
|
||||||
|
|
||||||
|
- Mesa visualizations work with SOIL simulations
|
||||||
|
|
||||||
|
'''
|
||||||
|
from mesa import Agent, Model
|
||||||
|
from mesa.time import RandomActivation
|
||||||
|
from mesa.space import MultiGrid
|
||||||
|
|
||||||
|
class MoneyAgent(Agent):
|
||||||
|
""" An agent with fixed initial wealth."""
|
||||||
|
def __init__(self, unique_id, model):
|
||||||
|
super().__init__(unique_id, model)
|
||||||
|
self.wealth = 1
|
||||||
|
|
||||||
|
def step(self):
|
||||||
|
self.move()
|
||||||
|
if self.wealth > 0:
|
||||||
|
self.give_money()
|
||||||
|
|
||||||
|
def give_money(self):
|
||||||
|
cellmates = self.model.grid.get_cell_list_contents([self.pos])
|
||||||
|
if len(cellmates) > 1:
|
||||||
|
other = self.random.choice(cellmates)
|
||||||
|
other.wealth += 1
|
||||||
|
self.wealth -= 1
|
||||||
|
|
||||||
|
def move(self):
|
||||||
|
possible_steps = self.model.grid.get_neighborhood(
|
||||||
|
self.pos,
|
||||||
|
moore=True,
|
||||||
|
include_center=False)
|
||||||
|
new_position = self.random.choice(possible_steps)
|
||||||
|
self.model.grid.move_agent(self, new_position)
|
||||||
|
|
||||||
|
|
||||||
|
class MoneyModel(Model):
|
||||||
|
"""A model with some number of agents."""
|
||||||
|
def __init__(self, N, width, height):
|
||||||
|
self.num_agents = N
|
||||||
|
self.grid = MultiGrid(width, height, True)
|
||||||
|
self.schedule = RandomActivation(self)
|
||||||
|
|
||||||
|
# Create agents
|
||||||
|
for i in range(self.num_agents):
|
||||||
|
a = MoneyAgent(i, self)
|
||||||
|
self.schedule.add(a)
|
||||||
|
|
||||||
|
# Add the agent to a random grid cell
|
||||||
|
x = self.random.randrange(self.grid.width)
|
||||||
|
y = self.random.randrange(self.grid.height)
|
||||||
|
self.grid.place_agent(a, (x, y))
|
||||||
|
|
||||||
|
def step(self):
|
||||||
|
'''Advance the model by one step.'''
|
||||||
|
self.schedule.step()
|
||||||
|
|
||||||
|
|
||||||
|
# model = MoneyModel(10)
|
||||||
|
# for i in range(10):
|
||||||
|
# model.step()
|
||||||
|
|
||||||
|
# agent_wealth = [a.wealth for a in model.schedule.agents]
|
Loading…
Reference in New Issue
Block a user