mirror of
https://github.com/gsi-upm/soil
synced 2025-08-23 19:52:19 +00:00
Changed models
This commit is contained in:
@@ -1,94 +0,0 @@
|
||||
import random
|
||||
import numpy as np
|
||||
from ..BaseBehaviour import *
|
||||
|
||||
|
||||
class SISaModel(BaseBehaviour):
|
||||
"""
|
||||
Settings:
|
||||
neutral_discontent_spon_prob
|
||||
|
||||
neutral_discontent_infected_prob
|
||||
|
||||
neutral_content_spong_prob
|
||||
|
||||
neutral_content_infected_prob
|
||||
|
||||
discontent_neutral
|
||||
|
||||
discontent_content
|
||||
|
||||
variance_d_c
|
||||
|
||||
content_discontent
|
||||
|
||||
variance_c_d
|
||||
|
||||
content_neutral
|
||||
|
||||
standard_variance
|
||||
"""
|
||||
|
||||
def __init__(self, environment=None, agent_id=0, state=()):
|
||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
||||
|
||||
self.neutral_discontent_spon_prob = np.random.normal(environment.neutral_discontent_spon_prob,
|
||||
environment.standard_variance)
|
||||
self.neutral_discontent_infected_prob = np.random.normal(environment.neutral_discontent_infected_prob,
|
||||
environment.standard_variance)
|
||||
self.neutral_content_spon_prob = np.random.normal(environment.neutral_content_spon_prob,
|
||||
environment.standard_variance)
|
||||
self.neutral_content_infected_prob = np.random.normal(environment.neutral_content_infected_prob,
|
||||
environment.standard_variance)
|
||||
|
||||
self.discontent_neutral = np.random.normal(environment.discontent_neutral, environment.standard_variance)
|
||||
self.discontent_content = np.random.normal(environment.discontent_content, environment.variance_d_c)
|
||||
|
||||
self.content_discontent = np.random.normal(environment.content_discontent, environment.variance_c_d)
|
||||
self.content_neutral = np.random.normal(environment.content_neutral, environment.standard_variance)
|
||||
|
||||
def step(self, now):
|
||||
if self.state['id'] == 0:
|
||||
self.neutral_behaviour()
|
||||
if self.state['id'] == 1:
|
||||
self.discontent_behaviour()
|
||||
if self.state['id'] == 2:
|
||||
self.content_behaviour()
|
||||
|
||||
self.attrs['status'] = self.state['id']
|
||||
super().step(now)
|
||||
|
||||
def neutral_behaviour(self):
|
||||
# Spontaneous effects
|
||||
if random.random() < self.neutral_discontent_spon_prob:
|
||||
self.state['id'] = 1
|
||||
if random.random() < self.neutral_content_spon_prob:
|
||||
self.state['id'] = 2
|
||||
|
||||
# Infected
|
||||
discontent_neighbors = self.get_neighboring_agents(state_id=1)
|
||||
if random.random() < len(discontent_neighbors) * self.neutral_discontent_infected_prob:
|
||||
self.state['id'] = 1
|
||||
content_neighbors = self.get_neighboring_agents(state_id=2)
|
||||
if random.random() < len(content_neighbors) * self.neutral_content_infected_prob:
|
||||
self.state['id'] = 2
|
||||
|
||||
def discontent_behaviour(self):
|
||||
# Healing
|
||||
if random.random() < self.discontent_neutral:
|
||||
self.state['id'] = 0
|
||||
|
||||
# Superinfected
|
||||
content_neighbors = self.get_neighboring_agents(state_id=2)
|
||||
if random.random() < len(content_neighbors) * self.discontent_content:
|
||||
self.state['id'] = 2
|
||||
|
||||
def content_behaviour(self):
|
||||
# Healing
|
||||
if random.random() < self.content_neutral:
|
||||
self.state['id'] = 0
|
||||
|
||||
# Superinfected
|
||||
discontent_neighbors = self.get_neighboring_agents(state_id=1)
|
||||
if random.random() < len(discontent_neighbors) * self.content_discontent:
|
||||
self.state['id'] = 1
|
@@ -1,2 +1 @@
|
||||
from .BigMarketModel import BigMarketModel
|
||||
from .SISaModel import SISaModel
|
||||
|
Reference in New Issue
Block a user