1
0
mirror of https://github.com/gsi-upm/soil synced 2025-08-23 19:52:19 +00:00
* Removed old/unnecessary models
* Added a `simulation.{iter_}from_py` method to load simulations from python
files
* Changed tests of examples to run programmatic simulations
* Fixed programmatic examples
This commit is contained in:
J. Fernando Sánchez
2022-11-13 20:31:05 +01:00
parent d3cee18635
commit 2869b1e1e6
41 changed files with 499 additions and 1100 deletions

View File

@@ -1,262 +0,0 @@
Configuring a simulation
------------------------
There are two ways to configure a simulation: programmatically and with a configuration file.
In both cases, the parameters used are the same.
The advantage of a configuration file is that it is a clean declarative description, and it makes it easier to reproduce.
Simulation configuration files can be formatted in ``json`` or ``yaml`` and they define all the parameters of a simulation.
Here's an example (``example.yml``).
.. literalinclude:: example.yml
:language: yaml
This example configuration will run three trials (``num_trials``) of a simulation containing a randomly generated network (``network_params``).
The 100 nodes in the network will be SISaModel agents (``network_agents.agent_class``), which is an agent behavior that is included in Soil.
10% of the agents (``weight=1``) will start in the content state, 10% in the discontent state, and the remaining 80% (``weight=8``) in the neutral state.
All agents will have access to the environment (``environment_params``), which only contains one variable, ``prob_infected``.
The state of the agents will be updated every 2 seconds (``interval``).
Now run the simulation with the command line tool:
.. code:: bash
soil example.yml
Once the simulation finishes, its results will be stored in a folder named ``MyExampleSimulation``.
Three types of objects are saved by default: a pickle of the simulation; a ``YAML`` representation of the simulation (which can be used to re-launch it); and for every trial, a ``sqlite`` file with the content of the state of every network node and the environment parameters at every step of the simulation.
.. code::
soil_output
└── MyExampleSimulation
├── MyExampleSimulation.dumped.yml
├── MyExampleSimulation.simulation.pickle
├── MyExampleSimulation_trial_0.db.sqlite
├── MyExampleSimulation_trial_1.db.sqlite
└── MyExampleSimulation_trial_2.db.sqlite
You may also ask soil to export the states in a ``csv`` file, and the network in gephi format (``gexf``).
Network
=======
The network topology for the simulation can be loaded from an existing network file or generated with one of the random network generation methods from networkx.
Loading a network
#################
To load an existing network, specify its path in the configuration:
.. code:: yaml
---
network_params:
path: /tmp/mynetwork.gexf
Soil will try to guess what networkx method to use to read the file based on its extension.
However, we only test using ``gexf`` files.
For simple networks, you may also include them in the configuration itself using , using the ``topology`` parameter like so:
.. code:: yaml
---
topology:
nodes:
- id: First
- id: Second
links:
- source: First
target: Second
Generating a random network
###########################
To generate a random network using one of networkx's built-in methods, specify the `graph generation algorithm <https://networkx.github.io/documentation/development/reference/generators.html>`_ and other parameters.
For example, the following configuration is equivalent to :code:`nx.complete_graph(n=100)`:
.. code:: yaml
network_params:
generator: complete_graph
n: 100
Environment
============
The environment is the place where the shared state of the simulation is stored.
That means both global parameters, such as the probability of disease outbreak.
But it also means other data, such as a map, or a network topology that connects multiple agents.
As a result, it is also typical to add custom functions in an environment that help agents interact with each other and with the state of the simulation.
Last but not least, an environment controls when and how its agents will be executed.
By default, soil environments incorporate a ``soil.time.TimedActivation`` model for agent execution (more on this on the following section).
Soil environments are very similar, and often interchangeable with, mesa models (``mesa.Model``).
A configuration may specify the initial value of the environment parameters:
.. code:: yaml
environment_params:
daily_probability_of_earthquake: 0.001
number_of_earthquakes: 0
All agents have access to the environment (and its parameters).
In some scenarios, it is useful to have a custom environment, to provide additional methods or to control the way agents update environment state.
For example, if our agents play the lottery, the environment could provide a method to decide whether the agent wins, instead of leaving it to the agent.
Agents
======
Agents are a way of modelling behavior.
Agents can be characterized with two variables: agent type (``agent_class``) and state.
The agent type is a ``soil.Agent`` class, which contains the code that encapsulates the behavior of the agent.
The state is a set of variables, which may change during the simulation, and that the code may use to control the behavior.
All agents provide a ``step`` method either explicitly or implicitly (by inheriting it from a superclass), which controls how the agent will behave in each step of the simulation.
When and how agent steps are executed in a simulation depends entirely on the ``environment``.
Most environments will internally use a scheduler (``mesa.time.BaseScheduler``), which controls the activation of agents.
In soil, we generally used the ``soil.time.TimedActivation`` scheduler, which allows agents to specify when their next activation will happen, defaulting to a
When an agent's step is executed (generally, every ``interval`` seconds), the agent has access to its state and the environment.
Through the environment, it can access the network topology and the state of other agents.
There are two types of agents according to how they are added to the simulation: network agents and environment agent.
Network Agents
##############
Network agents are attached to a node in the topology.
The configuration file allows you to specify how agents will be mapped to topology nodes.
The simplest way is to specify a single type of agent.
Hence, every node in the network will be associated to an agent of that type.
.. code:: yaml
agent_class: SISaModel
It is also possible to add more than one type of agent to the simulation.
To control the ratio of each type (using the ``weight`` property).
For instance, with following configuration, it is five times more likely for a node to be assigned a CounterModel type than a SISaModel type.
.. code:: yaml
network_agents:
- agent_class: SISaModel
weight: 1
- agent_class: CounterModel
weight: 5
The third option is to specify the type of agent on the node itself, e.g.:
.. code:: yaml
topology:
nodes:
- id: first
agent_class: BaseAgent
states:
first:
agent_class: SISaModel
This would also work with a randomly generated network:
.. code:: yaml
network:
generator: complete
n: 5
agent_class: BaseAgent
states:
- agent_class: SISaModel
In addition to agent type, you may add a custom initial state to the distribution.
This is very useful to add the same agent type with different states.
e.g., to populate the network with SISaModel, roughly 10% of them with a discontent state:
.. code:: yaml
network_agents:
- agent_class: SISaModel
weight: 9
state:
id: neutral
- agent_class: SISaModel
weight: 1
state:
id: discontent
Lastly, the configuration may include initial state for one or more nodes.
For instance, to add a state for the two nodes in this configuration:
.. code:: yaml
agent_class: SISaModel
network:
generator: complete_graph
n: 2
states:
- id: content
- id: discontent
Or to add state only to specific nodes (by ``id``).
For example, to apply special skills to Linux Torvalds in a simulation:
.. literalinclude:: ../examples/torvalds.yml
:language: yaml
Environment Agents
##################
In addition to network agents, more agents can be added to the simulation.
These agents are programmed in much the same way as network agents, the only difference is that they will not be assigned to network nodes.
.. code::
environment_agents:
- agent_class: MyAgent
state:
mood: happy
- agent_class: DummyAgent
You may use environment agents to model events that a normal agent cannot control, such as natural disasters or chance.
They are also useful to add behavior that has little to do with the network and the interactions within that network.
Templating
==========
Sometimes, it is useful to parameterize a simulation and run it over a range of values in order to compare each run and measure the effect of those parameters in the simulation.
For instance, you may want to run a simulation with different agent distributions.
This can be done in Soil using **templates**.
A template is a configuration where some of the values are specified with a variable.
e.g., ``weight: "{{ var1 }}"`` instead of ``weight: 1``.
There are two types of variables, depending on how their values are decided:
* Fixed. A list of values is provided, and a new simulation is run for each possible value. If more than a variable is given, a new simulation will be run per combination of values.
* Bounded/Sampled. The bounds of the variable are provided, along with a sampler method, which will be used to compute all the configuration combinations.
When fixed and bounded variables are mixed, Soil generates a new configuration per combination of fixed values and bounded values.
Here is an example with a single fixed variable and two bounded variable:
.. literalinclude:: ../examples/template.yml
:language: yaml

View File

@@ -3,33 +3,38 @@ name: MyExampleSimulation
max_time: 50
num_trials: 3
interval: 2
network_params:
generator: barabasi_albert_graph
n: 100
m: 2
network_agents:
model_params:
topology:
params:
generator: barabasi_albert_graph
n: 100
m: 2
agents:
distribution:
- agent_class: SISaModel
weight: 1
topology: True
ratio: 0.1
state:
id: content
state_id: content
- agent_class: SISaModel
weight: 1
topology: True
ratio: .1
state:
id: discontent
state_id: discontent
- agent_class: SISaModel
weight: 8
topology: True
ratio: 0.8
state:
id: neutral
environment_params:
prob_infect: 0.075
neutral_discontent_spon_prob: 0.1
neutral_discontent_infected_prob: 0.3
neutral_content_spon_prob: 0.3
neutral_content_infected_prob: 0.4
discontent_neutral: 0.5
discontent_content: 0.5
variance_d_c: 0.2
content_discontent: 0.2
variance_c_d: 0.2
content_neutral: 0.2
standard_variance: 1
state_id: neutral
prob_infect: 0.075
neutral_discontent_spon_prob: 0.1
neutral_discontent_infected_prob: 0.3
neutral_content_spon_prob: 0.3
neutral_content_infected_prob: 0.4
discontent_neutral: 0.5
discontent_content: 0.5
variance_d_c: 0.2
content_discontent: 0.2
variance_c_d: 0.2
content_neutral: 0.2
standard_variance: 1

View File

@@ -1,8 +1,3 @@
.. Soil documentation master file, created by
sphinx-quickstart on Tue Apr 25 12:48:56 2017.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
Welcome to Soil's documentation!
================================

View File

@@ -14,6 +14,10 @@ Now test that it worked by running the command line tool
soil --help
#or
python -m soil --help
Or, if you're using using soil programmatically:
.. code:: python
@@ -21,4 +25,4 @@ Or, if you're using using soil programmatically:
import soil
print(soil.__version__)
The latest version can be installed through `GitLab <https://lab.gsi.upm.es/soil/soil.git>`_ or `GitHub <https://github.com/gsi-upm/soil>`_.
The latest version can be installed through `GitHub <https://github.com/gsi-upm/soil>`_ or `GitLab <https://lab.gsi.upm.es/soil/soil.git>`_.

View File

@@ -12,7 +12,7 @@ set BUILDDIR=_build
set SPHINXPROJ=Soil
if "%1" == "" goto help
eE
%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
echo.

22
docs/mesa.rst Normal file
View File

@@ -0,0 +1,22 @@
Mesa compatibility
------------------
Soil is in the process of becoming fully compatible with MESA.
The idea is to provide a set of modular classes and functions that extend the functionality of mesa, whilst staying compatible.
In the end, it should be possible to add regular mesa agents to a soil simulation, or use a soil agent within a mesa simulation/model.
This is a non-exhaustive list of tasks to achieve compatibility:
- [ ] Integrate `soil.Simulation` with mesa's runners:
- [ ] `soil.Simulation` could mimic/become a `mesa.batchrunner`
- [ ] Integrate `soil.Environment` with `mesa.Model`:
- [x] `Soil.Environment` inherits from `mesa.Model`
- [x] `Soil.Environment` includes a Mesa-like Scheduler (see the `soil.time` module.
- [ ] Allow for `mesa.Model` to be used in a simulation.
- [ ] Integrate `soil.Agent` with `mesa.Agent`:
- [x] Rename agent.id to unique_id?
- [x] mesa agents can be used in soil simulations (see `examples/mesa`)
- [ ] Provide examples
- [ ] Using mesa modules in a soil simulation
- [ ] Using soil modules in a mesa simulation
- [ ] Document the new APIs and usage

View File

@@ -2,29 +2,32 @@
name: quickstart
num_trials: 1
max_time: 1000
network_agents:
- agent_class: SISaModel
state:
id: neutral
weight: 1
- agent_class: SISaModel
state:
id: content
weight: 2
network_params:
n: 100
k: 5
p: 0.2
generator: newman_watts_strogatz_graph
environment_params:
neutral_discontent_spon_prob: 0.05
neutral_discontent_infected_prob: 0.1
neutral_content_spon_prob: 0.2
neutral_content_infected_prob: 0.4
discontent_neutral: 0.2
discontent_content: 0.05
content_discontent: 0.05
variance_d_c: 0.05
variance_c_d: 0.1
content_neutral: 0.1
standard_variance: 0.1
model_params:
agents:
- agent_class: SISaModel
topology: true
state:
id: neutral
weight: 1
- agent_class: SISaModel
topology: true
state:
id: content
weight: 2
topology:
params:
n: 100
k: 5
p: 0.2
generator: newman_watts_strogatz_graph
neutral_discontent_spon_prob: 0.05
neutral_discontent_infected_prob: 0.1
neutral_content_spon_prob: 0.2
neutral_content_infected_prob: 0.4
discontent_neutral: 0.2
discontent_content: 0.05
content_discontent: 0.05
variance_d_c: 0.05
variance_c_d: 0.1
content_neutral: 0.1
standard_variance: 0.1

View File

@@ -115,13 +115,13 @@ Here's the code:
@soil.agents.state
def neutral(self):
r = random.random()
if self['has_tv'] and r < self.env['prob_tv_spread']:
if self['has_tv'] and r < self.model['prob_tv_spread']:
return self.infected
return
@soil.agents.state
def infected(self):
prob_infect = self.env['prob_neighbor_spread']
prob_infect = self.model['prob_neighbor_spread']
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
r = random.random()
if r < prob_infect:
@@ -146,11 +146,11 @@ spreading the rumor.
class NewsEnvironmentAgent(soil.agents.BaseAgent):
def step(self):
if self.now == self['event_time']:
self.env['prob_tv_spread'] = 1
self.env['prob_neighbor_spread'] = 1
self.model['prob_tv_spread'] = 1
self.model['prob_neighbor_spread'] = 1
elif self.now > self['event_time']:
self.env['prob_tv_spread'] = self.env['prob_tv_spread'] * TV_FACTOR
self.env['prob_neighbor_spread'] = self.env['prob_neighbor_spread'] * NEIGHBOR_FACTOR
self.model['prob_tv_spread'] = self.model['prob_tv_spread'] * TV_FACTOR
self.model['prob_neighbor_spread'] = self.model['prob_neighbor_spread'] * NEIGHBOR_FACTOR
Testing the agents
~~~~~~~~~~~~~~~~~~