1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-22 11:12:29 +00:00
soil/examples/NewsSpread.ipynb

533 lines
236 KiB
Plaintext
Raw Permalink Normal View History

{
"cells": [
{
"cell_type": "code",
2018-12-04 08:54:29 +00:00
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"start_time": "2017-11-02T09:48:41.843Z"
},
"scrolled": false
},
2018-12-04 08:54:29 +00:00
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"source": [
"import soil\n",
"import networkx as nx\n",
" \n",
"%load_ext autoreload\n",
"%autoreload 2\n",
"\n",
"# To display plots in the notebook\n",
"%pylab inline\n",
"\n",
"from soil import *"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# News Spreading example with SOIL"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this example we three different kinds of models, which we combine in five types of simulation"
]
},
{
"cell_type": "code",
2018-12-04 08:54:29 +00:00
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"total 288K\r\n",
"drwxr-xr-x 7 j users 4.0K May 23 12:48 .\r\n",
"drwxr-xr-x 15 j users 20K May 7 18:59 ..\r\n",
"-rw-r--r-- 1 j users 451 Oct 17 2017 complete.yml\r\n",
"drwxr-xr-x 2 j users 4.0K Feb 18 11:22 .ipynb_checkpoints\r\n",
"drwxr-xr-x 2 j users 4.0K Oct 17 2017 long_running\r\n",
"-rw-r--r-- 1 j users 1.2K May 23 12:49 .nbgrader.log\r\n",
"drwxr-xr-x 4 j users 4.0K May 4 11:23 newsspread\r\n",
"-rw-r--r-- 1 j users 225K May 4 11:23 NewsSpread.ipynb\r\n",
"drwxr-xr-x 4 j users 4.0K May 4 11:21 rabbits\r\n",
"-rw-r--r-- 1 j users 42 Jul 3 2017 torvalds.edgelist\r\n",
"-rw-r--r-- 1 j users 245 Oct 13 2017 torvalds.yml\r\n",
"drwxr-xr-x 4 j users 4.0K May 4 11:23 tutorial\r\n"
]
}
],
"source": [
"!ls "
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"ExecuteTime": {
"start_time": "2017-11-02T09:48:43.440Z"
}
},
2018-12-04 08:54:29 +00:00
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"---\r\n",
"default_state: {}\r\n",
"load_module: newsspread\r\n",
"environment_agents: []\r\n",
"environment_params:\r\n",
" prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n",
"interval: 1\r\n",
"max_time: 30\r\n",
"name: Sim_all_dumb\r\n",
"network_agents:\r\n",
"- agent_type: DumbViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_type: DumbViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
"network_params:\r\n",
" generator: barabasi_albert_graph\r\n",
" n: 500\r\n",
" m: 5\r\n",
"num_trials: 50\r\n",
"---\r\n",
"default_state: {}\r\n",
"load_module: newsspread\r\n",
"environment_agents: []\r\n",
"environment_params:\r\n",
" prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n",
"interval: 1\r\n",
"max_time: 30\r\n",
"name: Sim_half_herd\r\n",
"network_agents:\r\n",
"- agent_type: DumbViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_type: DumbViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
"- agent_type: HerdViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_type: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
"network_params:\r\n",
" generator: barabasi_albert_graph\r\n",
" n: 500\r\n",
" m: 5\r\n",
"num_trials: 50\r\n",
"---\r\n",
"default_state: {}\r\n",
"load_module: newsspread\r\n",
"environment_agents: []\r\n",
"environment_params:\r\n",
" prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n",
"interval: 1\r\n",
"max_time: 30\r\n",
"name: Sim_all_herd\r\n",
"network_agents:\r\n",
"- agent_type: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"network_params:\r\n",
" generator: barabasi_albert_graph\r\n",
" n: 500\r\n",
" m: 5\r\n",
"num_trials: 50\r\n",
"---\r\n",
"default_state: {}\r\n",
"load_module: newsspread\r\n",
"environment_agents: []\r\n",
"environment_params:\r\n",
" prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n",
" prob_neighbor_cure: 0.1\r\n",
"interval: 1\r\n",
"max_time: 30\r\n",
"name: Sim_wise_herd\r\n",
"network_agents:\r\n",
"- agent_type: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
"network_params:\r\n",
" generator: barabasi_albert_graph\r\n",
" n: 500\r\n",
" m: 5\r\n",
"num_trials: 50\r\n",
"---\r\n",
"default_state: {}\r\n",
"load_module: newsspread\r\n",
"environment_agents: []\r\n",
"environment_params:\r\n",
" prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n",
" prob_neighbor_cure: 0.1\r\n",
"interval: 1\r\n",
"max_time: 30\r\n",
"name: Sim_all_wise\r\n",
"network_agents:\r\n",
"- agent_type: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
"network_params:\r\n",
" generator: barabasi_albert_graph\r\n",
" n: 500\r\n",
" m: 5\r\n",
"network_params:\r\n",
" generator: barabasi_albert_graph\r\n",
" n: 500\r\n",
" m: 5\r\n",
"num_trials: 50\r\n"
]
}
],
"source": [
2018-12-04 08:54:29 +00:00
"!cat newsspread/NewsSpread.yml"
]
},
{
"cell_type": "code",
2018-12-04 08:54:29 +00:00
"execution_count": 10,
"metadata": {
"ExecuteTime": {
"start_time": "2017-11-02T09:48:43.879Z"
}
},
2018-12-04 08:54:29 +00:00
"outputs": [
{
"ename": "ValueError",
"evalue": "No objects to concatenate",
"output_type": "error",
"traceback": [
"\u001b[0;31m----------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-10-bae848826594>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mevodumb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0manalysis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'soil_output/Sim_all_dumb/'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgroup\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprocess\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0manalysis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_count\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'id'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m~/git/lab.gsi/soil/soil/soil/analysis.py\u001b[0m in \u001b[0;36mread_data\u001b[0;34m(group, *args, **kwargs)\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0miterable\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_read_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mgroup\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mgroup_trials\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterable\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 14\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterable\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/git/lab.gsi/soil/soil/soil/analysis.py\u001b[0m in \u001b[0;36mgroup_trials\u001b[0;34m(trials, aggfunc)\u001b[0m\n\u001b[1;32m 159\u001b[0m \u001b[0mtrials\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrials\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[0mtrials\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrials\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 161\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrials\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0magg\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maggfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreorder_levels\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m,\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 162\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 163\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.6/site-packages/pandas/core/reshape/concat.py\u001b[0m in \u001b[0;36mconcat\u001b[0;34m(objs, axis, join, join_axes, ignore_index, keys, levels, names, verify_integrity, copy)\u001b[0m\n\u001b[1;32m 210\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevels\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnames\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 211\u001b[0m \u001b[0mverify_integrity\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mverify_integrity\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 212\u001b[0;31m copy=copy)\n\u001b[0m\u001b[1;32m 213\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mop\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_result\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 214\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.6/site-packages/pandas/core/reshape/concat.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, objs, axis, join, join_axes, keys, levels, names, ignore_index, verify_integrity, copy)\u001b[0m\n\u001b[1;32m 243\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 244\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobjs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 245\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'No objects to concatenate'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 246\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 247\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkeys\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mValueError\u001b[0m: No objects to concatenate"
]
}
],
"source": [
"evodumb = analysis.read_data('soil_output/Sim_all_dumb/', group=True, process=analysis.get_count, keys=['id']);"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"start_time": "2017-11-02T09:48:45.458Z"
}
},
"outputs": [],
"source": [
"evodumb['mean'].plot(yerr=evodumb['std'])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-01T13:26:19.361423Z",
"start_time": "2017-11-01T14:25:57.017418+01:00"
}
},
"outputs": [],
"source": [
"evodumb = analysis.read_data('soil_output/Sim_all_dumb/', group=True, process=analysis.get_count, keys=['id']);\n",
"evohalfherd = analysis.read_data('soil_output/Sim_half_herd/', group=True, process=analysis.get_count, keys=['id'])\n",
"evoherd = analysis.read_data('soil_output/Sim_all_herd/', group=True, process=analysis.get_count, keys=['id'])\n",
"evoherdwise = analysis.read_data('soil_output/Sim_wise_herd/', group=True, process=analysis.get_count, keys=['id'])\n",
"evowise = analysis.read_data('soil_output/Sim_all_wise/', group=True, process=analysis.get_count, keys=['id'])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-01T13:26:20.461665Z",
"start_time": "2017-11-01T14:26:19.363815+01:00"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEKCAYAAAD+XoUoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8FfW9//HX52QlJCGERVFQXKjXLSLGDZequNTW1qW4\nVWURi6UubbULrfdesY+2Wmvd6u96XaBViytaq1770xbh56VaISAiigq2qBEkISEhe05yvr8/Zs7J\nSXKSnED2eT8fj/OYOXNm5nyHo+/55jvf+Y455xARkWAI9XcBRESk7yj0RUQCRKEvIhIgCn0RkQBR\n6IuIBIhCX0QkQBT6IiIBotAXEQkQhb6ISICk9ncBAEaPHu0mTpzY38UQERlUVq9evd05N6Y72wyI\n0J84cSJFRUX9XQwRkUHFzD7p7jZq3hERCRCFvohIgCj0RUQCRKEvIhIgCn0RkQBJKvTNbLOZvWtm\na82syF+Wb2Z/NbON/nSkv9zM7F4z22Rm68xsSm8egIiIJK87Nf1TnXOTnXOF/vv5wFLn3CRgqf8e\n4Gxgkv+aC9zfU4UVEZHdszv99M8FTvHnHwGWAz/xlz/qvOcw/sPM8sxsnHNua0c7+uCLKs69bwWj\nszO8V056y3x2BmP89yOGpWFmu1FkEZFgSzb0HfCqmTngAefcg8Ae0SB3zm01s7H+unsDn8VtW+wv\naxX6ZjYX7y8BRuy1PyOy0tlaWc+7n1dSVtNIc6T9s3sNSE0xDh6Xy9icDMbkZDI2J4OxuRmMyc5g\nbG6mvzyDtBRdrhARaSvZ0D/BObfFD/a/mtkHnaybqCreLsH9E8eDAIWFhe7RK4+JfRaJOCrqwmyv\nbmB7VQOl1Q1sr26ktKrBe1U3ULyjjrc/raCspjHxgYWMtJQQR+6TR/7wdEYNTyd/eAb52dH5lmle\nVjopIf0FISJDX1Kh75zb4k9LzOxPwDHAtmizjZmNA0r81YuBCXGbjwe2dKdQoZCR7wfyl/bI6XTd\ncHOEsupGSqrqKdnZQElVAyVV9Tz+1qeEmyM0NEV4b8tOyqob2FnflHAfZpBiRmqKUbC3d5IYGXdS\nGJWdzsislvnrH3+bUMh46urju3NYIiL9rsvQN7PhQMg5V+XPnwn8HHgBmAnc5k//7G/yAnCtmT0J\nHAtUdtaev7vSUkLsOSKTPUdktlr+/dO/1G7dcHOEHTWNlNU0Uh6dVjdQXtPIk6s+I9wcwQw+Lq2m\nfHMjO2obSdDKBEBKyJj22+WMzclkbG6G18wUm29Zlp2RqusQIjJgJFPT3wP4kx9cqcDjzrn/a2ar\ngKfNbA7wKXChv/7LwFeBTUAtMLvHS72L0lJCXrt/bma7z24486B2yyIRR2VdOHaSiL7+a/kmws0R\nvrRHDiVVDaz5dAclOxtoaIq020fIvO89fO8RjPGvN3gXp73rEPHL0lN1HUJEepd5nWz6V2FhoRvs\no2w659hZ30Rpm2amRSs2E26OcNCeObHrERW14YT7SA15TUyTJ+TF9VzKYNRwvzdTTgajs735mYtW\nAqiJSSTAzGx1XDf65LZR6Pe9hqZmytpcmC6tauCP//iEcHOEA8dms726ke1VDVQ1JL4OEb0Gcdje\nI2IXpUdlexerW+bTGTU8g+ueWEPIdA1CZKhR6A9B9eFmymq8E8D26uirkUff3ExTs+PfxuVQVt1y\nnSJRV1fwrkGMG5HJiGFp7V65/jQvy5v++i8fkJoS4umrj1eTk8gAptAPuEjEsbPeuwZRVt1IeU0D\nZTWN3L/sY8KRCCccMJrKujCVdWEq/GllXZjGBNciokZmpTE2JzN27WFMTkbsXogx2Rnc+pcPSEsx\nlnxnKiF1exXpU7sS+gPiyVnSM0IhIy/Lu+/ggLgHqL2w1usxe+fFkxNuVx9ujp0AKuvC3PTcu4Sb\nI5w/ZTwlVfWxZqhVm2sorUp8wfrAm16OdWvNb9O8FJ2/77VNpKUYD804mrysNDLTUjo8losfeBPQ\nNQuRnqaavnSLc46qhiZKqxoo2dnAfzz/LuFmxzcm7+V3gY12h/W6wlbUhenoP7HMtBAj/ZNU3rA0\nRg5Pi82/tG4LqaEQ88/+N/9E1tIc1fZkoROEBJWad2TAaWqOUFEXprymke898TZNEcfsE/ZjR20j\nFbWNVNSG2VEb9ubrvOmO2nCH1ybAO1nkDUv3TgJZaWzcVkVqKMSFheMZld3Sw2l0dkbsxrroHdc6\nQchQotCXIcE5x/T/foOmZscvzz+citowFXXeCSJ2TaK25f264kqaIhEijoQni5ARa2raWllHWkqI\ncwrGkZeVzsisNEb6Q3Hk+39RjByezvD0FC558B+AThAycCn0JZCitfcnvn0cO+vDsR5OZdWNbK9u\noKy6ge1+D6g3Pi4j3BwhMy2FyrrE90sApKV4fxmkhkJMnpDXesym7IxW4zeNys4gb1galz6kk4T0\nLYW+SBfim3ea/Tuuy2saY81KO2ob2VHjzT+7upimSIQDxmTHhu3o6EQRMgiZN8jf4eNHMCpu/KaR\nWa3Hb8ofns73nkh+/CY1SUlH1HtHpAvxwZkSN7BfIm9/uqPdNm3Hb9ruj91UXtPIU/74TQCbSqop\nr+l8/KaQwdRbl8YuVI/MSmdEVprX5JTlXbMYmZVOVX2Y1FCIkqp6cjPV60l2j0JfpAOJgrOz8ZtW\n/qu83XbR8ZvKa1vGbtpR08h9yzbR1OyYeuDo2PWJD77Y6V+/SHwh+5hfLgUgPTVEbmYaucNS/Wka\nuZmpjBiWxqfltaSGjKeLPiM/K71Vs1Tbwf90gggmNe+I9IPOAjfaLbaixmtu+vGSd2iOOGadsB87\n672L1zvrmthZH2ZnXZid9U1U1YW9G/OqG9s/vMKXnhJi5PA077kSw9P4YGsVqSnGxYUTvBPHsDRy\nM6N3aafG7tbOTk/t9vUKnVD6hpp3RAaJzsLQzLwafGYa+4zKIi/La366/Lh9u9zvRf/9BhEHd108\nOfaXRZn/14XXJNXSHFXd0ERTxPG7ZZs6vJcCvGYoMyM1ZHzjvhX+kB3+vRVZaYzw5/Oyoq90ws0R\nUpO8Q1sniL6l0BcZ4LoThk9/Z2psfkJ+Vqfrxvd6qm5sorI23PovibqW908XfUZTsyN/eDoVtWGK\nd9Sxo9a7sN3ZCePwBa/Erle0PVFEr11U1DaSmhLis/Ja8oenk5We0uEzKHSC2H0KfZGAig/O6F8W\nHYler/jD7GNaLY9EHFX1TbH7KKI32N356kc0RRxnHLJHrGdURV2YT8pq2FHTmPApdifdvgzwrlnk\nZ3m9n/KHeyeGaG+oL3bWkxYyVmzczkj/s/zh6QkvbnfnBBGkk4lCX0S61FEYhkLGiCzvzuh9R7Us\nf/ytTwFY8I1DE24X7S5bUdvItY+voSniuOqk/dlR00i532022gy1pWIn5W26y16+8K1W+8tMC/k3\n10Wfe53G5u01pKYYi1b8K9b05A3l0TKsR1pK90eRHewnCIW+iPS4rgIxvrtsjv8XxkWFEzrdpqk5\nwkUPvEm42fHvXzu45b6KuHsroieNzyvq2O4PNf7zl97vcJ/ZGd4F6x21jaSGjGsWr0nYbXbkcO9k\nMTIrDedctx6BOtBOEgp9EelXyYZhakqItJQQaSlw7P6julz/4gfexDnHgzMKY01P0b8uvGk4NsTH\nax+U0NTsuuw2G5USMk647TWyM1LJyUwlOzOVnMw0sjNSyc1MjVueRnlNIykh493iSnIyU/1XWsJn\nVexKk1R3KfRFZNDobm3ZrGW48c60Ddu23WYr4sZ7evD1f9IUiXD8AaOoqg9TVd9EeU0jn5TVUlXf\nRFV9OOHw41+/b0Wr9xmpIXIyvXsssv2TwUfbqkgNGbe8+B45Gd7y7Iy0lhNLbFkqTc0dPwejMwp9\nERmSunOCaLtu226z8V5+dysAd1x4RIf7a2yKUN3QRHV9E99dvJrmiOMHZ3yJ6oam2Imhqr7Ju8fC\nn6+qD1MfjtAccSwpKqa
"text/plain": [
"<matplotlib.figure.Figure at 0x7fa48c26df98>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEKCAYAAAD+XoUoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4XGXd//H3NzOTvWmaJsVCCwXtw0OBWKAgIkuhLKIo\niwgo0A1trSAquFT9/aR4ySIiIOoPWVottQhSEAHxAoX26VNl6UIppRVasEBpadOkabNnkty/P86Z\nySSZJJN9OZ/Xdc11ljnnzH0y7eecuc997mPOOUREJBjSBroAIiLSfxT6IiIBotAXEQkQhb6ISIAo\n9EVEAkShLyISIAp9EZEAUeiLiASIQl9EJEDCA10AgMLCQjdhwoSBLoaIyJCydu3aPc65oq6sMyhC\nf8KECaxZs2agiyEiMqSY2btdXUfVOyIiAaLQFxEJEIW+iEiAKPRFRAJEoS8iEiAphb6ZbTOz181s\nvZmt8ecVmNnfzWyLPxzlzzczu9vMtprZBjM7ti93QEREUteVM/3TnXOTnXNT/On5wPPOuYnA8/40\nwLnARP81B7intworIiI905N2+ucDU/3xxcAK4Pv+/Aed9xzGl8ws38zGOud2trehf39YwQW/+Sdj\nRmQwJi+DMSMyW4wXjchgdE464ZBqo0REeiLV0HfAc2bmgHudc/cBB8SC3Dm308zG+MseBLyfsO52\nf16L0DezOXi/BBh54GGMyAzzbmk1q7eVsbc62qYAaQahNCMSSuO4Q0ZRlJvB6Nx0CnMzKEwyHtEB\nQkSkjVRD/1POuR1+sP/dzP7dwbKWZF6bp6/7B477AKZMmeKWXPWJ+Hv1DU2UVNaxe38tuyvq2F1R\nR8n+Wv64+n2iDU3sr23gnZIq9lTWUdfQlHzH0oxwyDjqwJHkZ6dTkBNhVHZ6fDw/O51R2emMyo4w\nKied/KyIfkmIyLCXUug753b4w91m9mfgBGBXrNrGzMYCu/3FtwPjE1YfB+zoSqHSw2kclJ/FQflZ\nLeZfd/bhrctFVX0jeyrqKK2qo6Sinj2VdZRW1rP05XdpaGwiEkpj+95qXv+gnr3VUerbOUiAd6CY\nUJjD6Jx0CkdkeL8m/PHYL4gi/9dEVnqoK7skIjIodBr6ZpYDpDnnKvzxs4GfAE8CM4Bb/eFf/FWe\nBK4xs4eBTwD7OqrP7wkzIzcjTG5GmAmFOS3e++aZE9ss75yjJtpIWVU95dVR9lZ7B4K9VfXct/Jt\noo2OiWNy2VNZx+Yd+1lZWUdFbUPSz04zmDA6h6IRGRSN8K9D5GV41yL88aLcDOYuWYOZ8cjcT/bF\nn0BEpEvMu97awQJmhwF/9ifDwEPOuZvMbDTwJ+Bg4D3gi865MjMz4NfAp4FqYJZzrsPe1KZMmeIG\na4drtf5BIvYLoqSyjl89v4VoYxPHTSigZH8duyu8aqjq+sY26xsQDhkfLcplZFasismrXsrPjpCf\n1Tx+0183EU5L49GvfVJVTSLSKTNbm9CiMrV1Ogv9/jCYQ78rKusa4tchSvxrEQ/87zs0NDZxzMGj\nKK+OUl7j/coor45S35i8qskMRmWnU5ibTpFftdT88qqbfvHsm4RDaTwy90QywqpqEgkihf4QEqtq\nih0Ayqvr+fGTb9DQ2MT5kw9iT2Wd//J+ZeypqKMqyS8JgNyMMAU56RTkpDM6NvSvRxTkpHPfyrcJ\nh9K498rjKMhJJzt9UPSoLSI9pNAf5qrrG+JVTN9ftoGGxia+cNw4SqvqKfNfpZXN4+39ksiMpDE6\nJyN+oEh8jc5JZ+Gq/xAJGb+53DtI5GWG8Wrt2rr03hcBdM1CZAB0J/R1yjeEZKeHyS4IM74gm79f\nd1qHyzrnqKxroKyqnnl/WEdDUxNfOfkw/wBR1+JA8XZJJWVV9W2uSZx++woAIiFjVHbsF0Q6BTnN\nvyJ27a8lEkpj9bYyRvu/MNo7SOgAITLwFPrDlJkxIjPCiMwIz3zzlJTWqY02UlpVz9wH1xBtbGLu\naR/1fj1U1VNWWR8/YLy+t5zSynoq6ppbNn3xty/GxyMhY3SO18R1dG4Ghf7BYkd5DZFQGv/YtIuC\nXO9XxaicdEZktD1I6AAh0jdUvSPdVtfQyGX3vkS0sYnvffq/Ka3yWjjtqayntNL7NVHqX5coraqj\nNpq8uik9lMaonAgFORkU+MNX/lNKOC2Nr039KIU5LX9l5GdFSEtrPkjoACFBpTp9GbScc3zxty8S\nbWzixvOPYm9V8y+HsqqoP2yucnp/bw2NTcn/bab5rZti1yG27KogHErjshMOpiA7QoF/EXtUtneg\nGJWdTnrYawLblQOEDiYy2KlOXwYtM2PZvJNSXv7Se1+kyTl+/eVj4xenSxMODLEqp7KqeqqjjTTU\nNvCrF7bQ3jnMiIwwBbnp7KmsI5KWxvV/es3rmiMn1h2HdwBJ7Jajq3SQkKFAoS+DUmJwHpCX2eGy\nsbB96KsnUl5dz97qhFZM1c3XI/ZW17P837upb2zixbf3UFZd326VE3gd/IXTjAt+808Kcrwb6Aqy\n0xMOFAkHjZwITc6R1k4rp/bKrAOE9DeFvgx5icE5OjeD0bkZfGxM8mVbh21NfSN7q+vjXXOUVddT\n7k//8ZX3aGh0jMgMs7uiljc/rKCsqp6aaPL7JcCrejr5Zy/E77yOHRzyEw4SI7MiVNY1EE4zKmqj\n5Ca5kN1RmTuig4l0RqEvgdI6DLPSQ2SlZ3Fgq879AF58uxSAxB5gwWvltLe6nr1Vsf6b6tlbVc9v\n/+cdGpuaOH5CQbxfp/fKqtlbVc/+dvpwOnrBc0RC1nxQyG7+5RAbL6moI5xmvPROKXmZEUZkhsnL\nijAiI9zignZX6QARTAp9kXa0F4aZkRBjR2YxdmTLA8XTG7x+Be+8dHKbdRoam9hXE2Wvf/f1Dx9/\nnYYmx2UnjI93+hc7kLxdUsned72DRuLF7Mvue6nNdkdkhJsPAplhtuyqJBwybn5mc/y+idG56RTm\nZFA4wrtu0Z1uO3SAGD4U+iK9pKNADIfS4lVPAKNy0gGYc+pH213HOcf+2gamL3yZhibHDz9zBPtr\nolTUNrC/Nsr+2ob4dEVtlP21Xn9O1fWOxf/a1u6zJkZkhinMzaCkoo5IyPjuo6+RlxVhZFaEvMww\nI7Mj5GX60/78xiZHV35U6CAxeCn0RQZAKmFoZozMipAZ8c7MP/Wxwk7XiYXtw3NOpKq+sfk+iVb3\nTeyprGPlWyXURptYtXUP+2ui7fbtFC8PcPxN//B7ho0wMiuxp9gII2PXL7LSqfKvWVTXN5AVCema\nxSCi0BcZ5LoTcInPmjhkdE7SZVoHaLSxiYraBvbVRNlfE/WGtd7wtyvepqHJMfXwongngR+U17Bp\nxz7Ka6JJuxUHmPTjZ8kIp/nNYZuvVRQktIDaU1lHOC2NDdvLyc9KZ2R2z69XJNs/8Sj0RYaRngRc\nJJQWv+GttSfXew+/u+Wi4qTr1jU0sq86SnmNd0D40Z+9axaXHj+evf69FbFWUjvL9/utpFo+C/vz\nv/5nfDzN8J4zkRVhZMJzJ7aVVhFOS+N3//yP/ysjnTz/l0a+Xx3VnedjB+nXhkJfJKB6M7QywiHG\n5IUY499TETtwfO209q9ZxC5uz/rdahqamrjurMP9g0a9f9HbOzDsq4myp7KerSWV7Kmop9E5bnxq\nU7vbzc0IMzIrwt7qesJpxteWrGWkf/CIXafI969VxF7RxibCPfxl0Z7BdpBQ6ItIp7oaWKksH7u4\n7T1vOsSZkw7odJ1L730R5xy/vXIK+/wDRLlfHRU7QMQeVvTCv3fT0Oh4u6SSfX51VXsXt2OKFzzr\n3ZHt/8povsfCq5oamRWhvDpKJGS8X1bNqJx0ctI7vmbRFf1xgFDoi8iA6mrAmVlCNVTy6xWQPEBr\no43x6xWJr1/+YwsNTU2cecQBXrNa/5fGO3sqKa+KtuhRNuaU25YDXq+yI7NiN+FFWtxzMTI7wu79\ntYRDabz8Tql/QPHe604
"text/plain": [
"<matplotlib.figure.Figure at 0x7fa48c26d668>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEKCAYAAAD+XoUoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VdW9//H3ysk8zxAIECYRhIiKqNQZh1rt1SrOAyC9\nWKr1ttpW2v5utX3aaq1Va3svda5SvA44VL3WCaFeq1YGEZnHgGFIQgIh87h+f6ydkwQScgJJTpLz\neT3PefbJ3mvvs7ZHvnudtdf+LmOtRUREQkNYsCsgIiI9R0FfRCSEKOiLiIQQBX0RkRCioC8iEkIU\n9EVEQoiCvohICFHQFxEJIQr6IiIhJDzYFQBIT0+3OTk5wa6GiEifsnz58r3W2ozO7NMrgn5OTg7L\nli0LdjVERPoUY8z2zu6j7h0RkRCioC8iEkIU9EVEQoiCvohICFHQFxEJIQEFfWNMnjHmS2PMSmPM\nMm9dqjHmPWPMJm+Z4q03xphHjDGbjTGrjDEnducJiIhI4DrT0j/HWjvRWjvJ+3susMhaOxpY5P0N\ncBEw2nvNBuZ1VWVFROToHM04/UuBs733zwBLgLu89c9aNw/jp8aYZGNMlrV2d3sH2lBQxi3zlzFm\nQALHDEzg2IEJ5KTFEe5T75OISFcKNOhb4F1jjAUetdY+BgxoCuTW2t3GmEyv7GDgqxb75nvrWgV9\nY8xs3C8BEgeNYFNhOe+tLaDRm7I30hfGiIw4jh3oLgRjBiRwzIAEslNiMMYc2dmKiIS4QIP+16y1\nu7zA/p4xZv1hyrYVkQ+Zfd27cDwGMGnSJPvBnWdTXdfA5sJyNhaUsaGgjA17yvhsWwmvrdzl3y/M\nwITsZEZnxnPMgHhGD0hgdGY8g5N1MRAR6UhAQd9au8tbFhpjXgUmAwVN3TbGmCyg0CueDwxpsXs2\nsIsAREf4GD84ifGDk1qtP1Bdx6aCMu588Quq6hqIi/SxZEMRC5fn+8vERfoYldl8EXhlRT4xET5e\n+e7XCAvTxUBEBMC4rvfDFDAmDgiz1pZ5798DfglMBYqttfcZY+YCqdbaHxtjLgZuA74BnAI8Yq2d\nfLjPmDRpkj2S3Dv7KmrZVFjOpsIyNhW45caCcorKavxlYiJ8jMiIY3RmPKNavIalxRGhewYi0ocZ\nY5a3GFwTkEBa+gOAV72uk3DgOWvt28aYpcCLxphZwA7gSq/8W7iAvxmoBGZ2pkKdkRIXyeThqUwe\nntpq/f7KWq57/FOqahs459gBbC4qZ2nevlbdROFhhmFpsf6LwNur9xAT4WPhnClER/i6q8oiIkHV\nYUu/JxxpS7+zKmrq2VJUzubCFq+icrYXV9Lg3UEOM5CTHue/cTxmoFvmpMVqNJGI9Crd1dLvN+Ki\nwsnNTiY3O7nV+tr6Rq6Y9zFVtfV8Y0IWGwrKWL+njLfX7MG2GE00MjOeMQPiWb59HzGRPp6eOZlB\nSdG6gSwifUZItfQ7q2k00YY9Zf4RRRv3lLGrtNpfJiE6nDHeL4JjsxLdENMBCSTFRABw9aOfAPDC\nLacF5RxEpP9SS7+LtTea6Ip5/6SqtoHrThnG+j0H2LCnjNe/2MWCf+3wlxmUFM2YgQnsKKkkNtLH\nut0HGJkRT2S4uohEJHjU0u8i1lp2l1azYY/rGmq6GGzYU+Z/SCE8zDA8Pc79KvB+ERw7MJHslBjC\nwox+FYhIp6ilH0TGGAYlxzAoOYZzjs30r7/yzx9TXdfAv585kg3eheCL/P28uar5AeXYSB+jBySw\na18VMZE+PtxYxOgB8QxM1P0CEelaaukHSXlNvbtPsKf5tTSvhPrG5u8jISqcUQPiGZ0Zz+jMBEYN\niOeYAQkMSormmsc+BfSrQCSUqaXfh8RHhXPi0BROHJriX3f1o59Q19DIjy48ls2FZe7Bs4JyPlhf\nyIvLWj99DBAT6WPeki3+Zw2Gpsbi09PHInIYaun3ESUVtWxu8fTxKyvyqaproK6h+fuLDA9jRHoc\nIzPjGZUR76WliOc/X1tNmDH6VSDSz6il34+lHvT08brdBwB47KZJ/gfOthSWs6mwnC/zS3nry920\nvJ5Hh4e1Sl89ZkACOelKRSESatTS76eq6xrYWlTBpsIy7n97PZW1DaTERZK3t+KQ9NVj/COJ3PLO\nF1di9MtApNdTS1/8oiN8jBuUyLhBiTznPT/wwi2nUV3XwJYiL331nnI27DnAsrx9/O2g9NUxkT7u\nWriK0QPiGeP9MshIiNJoIpE+Ti19AZrSV7uLwcPvb6SqtoHI8DD2ltf6yyTFRHjdQ24U0TEDErj/\n7fVE+ML0q0AkCNTSlyOWGB3BScNSOGlYCq99vhNwvwz2ltew0Us/sbGwnI17yvjbyl2UVdf79w0P\nM1z6X/8kJy2WnLQ4ctJjGZYWR05aHCmxEf5fB3r4TCT4FPTlEC2Dcnp8FOnxUUwZme5fZ61lz4Fq\nNhaU85+vfUl1XSPxUT6W5e3j9S92tbqBnBAdTk5aHMPSYvmqpJLoCB/Lt+9jRHocKXGRPXlaIoKC\nvhwBYwxZSTH+F8CCb58KQE19A1+VVLG9uIK84kr/8sudpf5EdVfM+xiA5NgIctLiGJEex/D0OIZn\nuF8Hw9PjuPkvSwH9KhDpaurTlx5z5Z8/pqa+kf+YOppteyv8r7y9Fa0ylwJE+AzRET6+ftxActLj\nGJoay7C0WIalxpEUG9GqrLqNJFSpT196tZe+M6XdbVW1DeQVN18Inv7nNmrqGlmysYiiFnMhg7uh\nnJMWy9C0OIalxlJUVkN0RBjF5TWkxkVqhJHIYSjoS68QE+ljbFYiY7MSAfhwYxHgWu+VtfXsKKlk\nu9ddtL24kh0llXzx1X7e+nK3f9azk371PsmxEe6p5Ix4RmTEMzIjjhEZ8QxLiyXCF6ZfBRLy1L0j\nfVpdQyPT5rlMpledPJQtReVsLSpnS1EFRWU1/nLhYYahqbGUVNYSE+HjB+cd409XcXB3URNdIKS3\nU/eOhJwIXxjRET6iI3zMOn14q20HquvYWlThXQTK2VJYwT82FlFaWcePX17lL5ceH8nIjHhGZsYz\n0stZNDIjDmutuoqk31FLX0LK1Y9+grWW+6cd35yzyPtlsLmwnNKqOn/ZMOOebD5/3ABGZbjkdaMy\n4xmW1nbOIv0ykJ6mlr5IAIwx5KTHkZMex9SxA/zrrbX+bKZbiip4ZNFGquoaD0lTER7m9h/tpbRu\nejU2WsKU2lp6ObX0RdrRsuVeUVPvT2C32ctmuqWwnLzi5gR2AFHhYZw6Is3rLopjRLpbZsS3zluk\nXwXSFdTSF+kmcVHhTMhOYkJ2Uqv1NfUN5O2tZFNhGfe+tZ7qugb2ltfw2bYSquoa/OUSosIZkRnP\nSG++g5KKWqIjwqiuayA6wnfYz9YFQrqSgr5IOwIJslHhPpeFdGAC8z/Z7t+vsdGlqnA3kMvZureC\nLUXlfLK1mFe83EYAx/7n2wxKivZ3Nw1P85beA2mR4ZrvQLqWundEelh5TT3XPPoJ1XUN/NvEwc1P\nJhdXsL+y9Y3kwSkxHKiqIzrcxy1njSQn3SW1y05p+4KgXwWhRd07In1AfFQ4cd7r9qmjW23bX1nb\nKj3FtuJKPlhXwN7qWn755lp/OV+YYXByDMPSYhmeHsewtDiGp8dSVdtAVERgvw50gQhNCvoiQdBe\noE2OjeSEoZGcMDTFv65pmOm8G04ir7iSvL0VbC92F4TtxRW8+vnOVqmuAU67dxFDUmLJTo1xy5QY\nhqTGMiQ1loGJ0fg0yihkKeiL9AHGGNLio0iLj+KkYSmttllr2VdZR15xBT988Qtq6hs4ZUQa+fuq\n+HRLMa8e2Nkq3XWEzzAoOYZ9FbVERfj48z+2+LObDkuLbfPGsn4V9B8K+iK9XEeB1hhDalwkqXGR\nZCREAfDgVRP922vrG9m1v4qv9lWSv6+Kr0oq+WpfFR+sL2BfRS33/X19q+NlJUX7J8NxcyHEUVlb\nT3T44UcZtaSLRO8VcNA
"text/plain": [
"<matplotlib.figure.Figure at 0x7fa460c6c320>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEKCAYAAAD+XoUoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYHNWV+P3v6TDTPT05SUJpJCEEQhqUwcZEEY13CSYH\nkWzxEF7sNeuFtb0kezHGGLDWNuFnsmWLsBgwiwFbCBONkEAI5RxGYTQ5hw73/aOqe7qlntwT+3ye\np5/K1bempVO3bt06JcYYlFJKJQfHQBdAKaVU/9Ggr5RSSUSDvlJKJREN+koplUQ06CulVBLRoK+U\nUklEg75SSiURDfpKKZVENOgrpVQScQ10AQDy8/NNUVHRQBdDKaWGlJUrV5YbYwq6s82gCPpFRUWs\nWLFioIuhlFJDiojs7O422ryjlFJJRIO+UkolEQ36SimVRDToK6VUEtGgr5RSSaRLQV9EdojIVyKy\nSkRW2PNyReRvIrLZHubY80VEFonIFhFZLSKz+vIAlFJKdV13avqnGGNmGGPm2NN3AEuNMZOBpfY0\nwNnAZPuzEHg0UYVVSinVO71p3jkXeNYefxY4L2r+c8byTyBbREZ1tKNNpXXc/MfP+e2yLby38QAH\n6pp7USyllFLt6erDWQZ4R0QM8Lgx5glghDFmH4AxZp+IFNrrjgZ2R21bYs/bF71DEVmIdSVAxmET\nWV1Szf+tblulICOVqaMyOfqwTKYelsnRh2UxPjcNh0N6cJhKKaWg60H/eGPMXjuw/01ENnSwbryo\nfMjb1+0TxxMAc+bMMR/8x6nUNPlZv6+WtXtrWbe3lnX7avno/W0EQtbmDoG0FBfnzjiMI0dmcOSo\nTI4YkUGW193Fw1BKqeTWpaBvjNlrDw+IyJ+BeUCpiIyya/mjgAP26iXA2KjNxwB7u/I9WV43x03M\n47iJeZF5LYEgm0vrWbevll+9s5HGliB/+XIviz8NRNY5LMvDkaMymTIywzoZjMxkYoEPt1M7Jyml\nVLROg76I+ACHMabOHj8DuBd4HbgauN8evmZv8jpwi4gsAY4FasLNQD2R6nIybXQW00ZncfEc61xi\njGF/bTMb9tWxYX8dG/bXsnF/He9vKotcFQjgTXFyxtQRHDEygykjMjhiRAajs73aRKSUSlpdqemP\nAP4sIuH1/2iMeUtEPgNeFJHrgV3ARfb6bwLfBLYAjcC1iS60iDAqy8uoLC+nHFkYmd8aCLG1rJ6N\n++v4xVsbaGwNsnx7Ja+uarvQ8KU4mTzCPgnYJ4MpIzO4efFKRIQXbvhaoourlFKDhhhzSHN7v5sz\nZ47pyyybtc1+NpfWsXF/PZtK69i4v46NpXVUNrRG1nE5BG+Kk/NmjOaIEelMtq8Mcn0pfVYupZTq\nDRFZGdWNvksGRWrlvpbpcTN7fC6zx+fGzC+vb2GTfQL43XtbaWoN8uqqPdQ1t90vyE9PYXJhRsyJ\n4Bd/XY/L6dCrAqXUkJMUNf3uCN8v2FRaz+bSOjaV1kXGG1qDkfXcTmH2+BwmFaRzeKH1mVSQzqgs\nD3ZTmFJK9Smt6SdA9P2Ck45oeyGNMYY91U1sLq3nztfW0OwP0hoI8Zcv91IbdWXgS3EyyT4BHF6Y\nzqtf7MHjdvLyjV8j1eUciENSSqkIren3kjGGsvoWth5oYEtZPVsP1LO1rJ4tB+rZV9P2ZLFDYExO\nGhPyfUzI9zGxwMfE/HQmFPgYlenB4RAuefwTAG02Ukp1idb0B4CIUJjhoTDDw9cm5cUsq28JcMnj\nn9DsD3JO8WFsL29gW1k9n+2opDGqqSjV5WBCvo8Dtc143E5eWrGbCfk+ivJ95PlStLlIKZUwWtMf\nAMYYDtS1sK2sgW3l9Wwva2B7eQMfbSmnJRCKeXw5I9VFkX0CmJCXxoQCH0V5Pn72xjq9maxUkutJ\nTV+D/iByyeOfEDKGX154DNvLrRPBjoq24Z6qJkJRP5fLIcwan8MRI9I5YkRGpJdRXnrqwB2EUqrf\naPPOEBdday/K93HKQctbAkF2Vzaxo7yBe99YS5M/RDBkeG3V3phupnm+FCaHTwQjMvjjP3fiTXHy\nyk3H99ORKKUGK63pDwPGGEprW+zupXVsLq1nY2kdWw7UU98S/cxBauSqwPpYzx4cnLBObygrNTRo\nTT9JiQgjszyMzPJw4kHdTPfWNHPd08tp8geZNyGPzaV1vLhid8yN5BGZqTEngrrmAGkp2r1UqeFI\na/pJKBSynzk4YD14Fr462HygjmZ/KLLe6GwvU0ZaJ4MpI9OZXJjB4YXpeNxtJwS9KlBq4GhNX3WJ\nwyGMzU1jbG4apx45IjI/FDLsrmrku8+uoNEfZPb4HDbur+ODzWX4g23vNCjK81lXBSMzqKhvweN2\n0tgaIC2l439OeoJQauBp0FcRDocwPs9Hji+FHODXl84EwB8MsbOigY37rXsFm0utfEXvrNsf6U00\n9c63GZnpoSjfegCtKM/uZprvY1xuWszVgVJq4GjzjuqxZn+QCx/9mGZ/kPNmjmZ7eWOki2l0BlMR\nOCzLS12zH4/bycITJ0YePhubk0aK69CX3ehVgVKd0+Yd1a88bie+VBe+VBe3nDo5ZllNk58d0c8Z\nlDfwt3WlVDS08rP/Wx9Zz+kQxuR4Kcrz2VcIaRTl+2j2B0mNczKIR08QSnWdBn3VK+0F2iyvm2PG\nZnPM2OzIvEse/wRjDI9dNSdyIthR0cA2e3zFjsqYTKYCnPbQP6JyFfmYWJDOBE1PoVSPadBX/UpE\nyPWlkOtLYfb4nJhl4eR1O8obuf1/V9PsDzIx38f28gb+sbGM1mBbz6JMj4sJBelMzPexp6oJT4qT\nTaV1FOX54jYXhelVgUp2GvRVv+ks0EYnryvMsFJJPLHAaq4Mhgx7qprYaucq2lZez/byBv65rSKS\nzfSMh9/H5RCK8n1MLrQePLOG1tVBd1Nb6wlCDUca9NWQ4HQI4/LSGJeXxilTYpeFbyZ/54SJ1jMH\nB+rZsL+Ot9e29S5yOoTxeWlUNbTidTv58xclTCpIZ2JBOump+t9AJQ/9164Gpe7Urp0OwZfq4ryZ\no2PmN/uDbC9vYJOdkmJzaT3vbTpAVaOff3vhy8h6IzJT7ROAj0kF1gtwJhWmY4zp1n0DvTJQQ4EG\nfTXktRdkPW4nR43K5KhRmZF54UymP79gOlvLGthaVs/WA9bw4MR1DrH2cdPilYzP8zEhz8d4u3dR\nYUaq3khWQ5IGfZV0HCIcXpjB4YUZMfONMZTXt1ongrJ6/mfpZpr8Idbvq+OdtaUEovJae9wOisIn\ngTwf4/N81DT58bqdXbpC0KsCNVA06CtlExEKMlIpyEjluIl5vL5qL2AF5kAwxN7qZnZUNLCzooEd\nFY3srGhga1kDyzbE9iyadtfbTCpM53C7mWhSgY/DC9MZl9txz6L26AlCJZIGfZVUeho4XU5H5EYy\nFMQsC4YM+2ubuf6Zz2j2Bzl5SiFby+r5ZFsFr3yxJ7Ke0yGMz01jUmE6uyob8bqdfL6rikn56WSl\nuVGqP2jQV6odXT1BOB3C6GwvWV43WV43d//r0ZFl9S0Bttv3DrYcqI80He2vacYAF/zuY8B610Hb\njWRf5ErhsGxvt8qsVwWqMxr0lepD6akupo/JYvqYrJj5Fz/2MS2BELfOnxxzM/mva/ZR3eiPrJfq\ncuB0CB63k4fe2chEu3fRxAIfPu1qqnpA/9UolSDdqV2LWIF8/lEjmH/UiJhllQ3WzeRtZfVsLWvg\nxc9209AS4DfLtsS8I3lkpifm6mBiQTotgSApTs1ZpNqnQV+pQcZKU5HL3KJcAL7cXQ3Ac9fPY1dF\nY6Sr6TZ7+OqqPYd0NT3rkfeZZOcpmljgs4fph7was6v0BDF8aNBXagD0JHimupxWaokR8buabiur\n547/XU2TP8TobC/r9tXy1tr9BKMuD/J8KZETwd7qJjxuJ5tL6xiXl9btNBVqaNKgr9QQF93VtDDT\nA8CT18wFoDUQYndVI9v
"text/plain": [
"<matplotlib.figure.Figure at 0x7fa460d184e0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEKCAYAAAD+XoUoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8HNW5+P/Ps0Va9W5btmzJKrhgCzdMDc2Eni+Q0Dsh\nMZfAj+SSArlJaK/cQAgBQi6hfIPBOCSmhACXHyQEU023jTE2brIs27JlVatrte18/5jRSrIleyWr\nep/367WvmZ09M3vGaz3nzJmZZ8QYg1JKqejgGO4KKKWUGjoa9JVSKopo0FdKqSiiQV8ppaKIBn2l\nlIoiGvSVUiqKaNBXSqkookFfKaWiiAZ9pZSKIq7hrgBAZmamycvLG+5qKKXUqLJy5coaY0xWX9YZ\nEUE/Ly+PFStWDHc1lFJqVBGRbX1dR4d3lFIqimjQV0qpKKJBXymloogGfaWUiiIa9JVSKopEFPRF\npExEvhKR1SKywl6WLiL/FpHN9jTNXi4i8rCIlIjIGhGZM5g7oJRSKnJ96emfbIyZZYyZZ7+/DVhm\njCkCltnvAc4EiuzXQuDRgaqsUkqpg3MwwzvnAovt+cXAeV2WP2MsnwCpIpK9vw1tqmzipr+u4rH3\ntvDB5mrqWnwHUS2llFK9ifTmLAO8KSIGeNwY8wQw1hhTAWCMqRCRMXbZCcCOLuuW28squm5QRBZi\nHQmQND6fL7bX89qaziLjUzxMH5/C4eOTmTHBmmaneBCRfuymUkopiDzoH2eM2WUH9n+LyIb9lO0p\nKu/z9HW74XgCYN68eebD206hvtXHul2NrNvVwLpdjazd2cCyDZV0PLvd5RDiY5x8e04ORWMTOWxs\nEkVjEkmNj4lwN5RSKrpFFPSNMbvsaZWI/AOYD1SKSLbdy88Gquzi5cDELqvnALsi+Z7U+BiOK8zk\nuMLM8LJWX4D1FU2s29XAH5eV0OoL8PyKHbT6guEymYmxFI1J5LCxiRTaDcF9/9yA2+ngueuPieSr\nlVIqKogx+3TCuxcQSQAcxpgme/7fwN3AAqDWGHOviNwGpBtjfiYiZwM3AWcBRwEPG2Pm7+875s2b\nZ/qSeycUMuxqaGNzVTMllc1srmpiU2UzJVXNNLcHwuVcDmH+5HSmjktmanYS08YlUzQ2EY/bGfF3\nKaXUSCUiK7tcXBORSHr6Y4F/2GPpLuCvxph/isjnwPMich2wHbjQLv86VsAvAVqBa/tSoUg4HEJO\nWjw5afGcPGVMeLkxht2NXjZXNvPLl9fS5gvS4gvy18+24fWHrHUFJmcmWA3BuCSmZlvTHz+/GhHR\nIwOl1CHtgD39odDXnn5fBUOG7XWtbKhoZP3uJjZUNLJhdxPb61rDZZwixMU4OX/2BKZlW0cGU8cl\nER8zIhKRKqXUPvrT04+KoN+b5vYAmyqb2FDRxENvbaLNPk/QZA8RiUBeRgLT7KGhqdnJTMtO4pbn\n9KhAKTX8NOgPAGMM5Xva+LqikfUVjWyoaGL97ka21XY5KnAI8W4n584ezxR7mOiwsUmkxLmHseZK\nqWijQX8QNbcH2Li7kfUVTTy8bDOtviBC51EBQHaKhynjkqzXWGt656vrcOhRgVJqEAzWiVwFJMa6\nmJubztzcdP73S+sK1KULj2ZXg5dNu5vYsLuJjbutcwUfltTgD3Y2ph63g+uXrKBwTCJFY5IoHJNI\nQVYicTF6FZFSamhpT38Q+IMhympa2LC7iXteX0+bP0h6Qgxlta0EQ9a/twjkpMVRmJVI0dgkCrMS\nefqjMuJiHPz9huOGeQ+UUqOB9vRHCLfTQdHYJIrGJvGXT6xHWD53/TH4AiG21bZY9xdUNYenH26p\nxRcIhdc/5p5lFI1N4rAx9l3HYxMpHJNIkqfznMHFj38c3q5SSkVKg/4g6xqUY1ydjUFXwZChfE8r\n339mBW2+IEfmpbOpqom/fFobvr8ArHxERWOTOGxsItVN7cTFOGluD5AYqz+jUioyGi1GAKdDyM1I\nIC0+hrR4eODiWUBnY7CpsplNlU1srrTuPP64tPPIYMYd/2JCapx9viDRPiqwzht0XE2kRwVKqQ4a\n9EeQvYNyR2OQm5HAN6ePDS8Phgzf/tOHtPqCnDd7Apsrm9hc1cwnpbW0dxkmGpscS9GYJMpqW4hz\nO1lRVkeRXlqqVFTToD8KOR2Cx+3E43Zy48mF4eXBkGHnnjY2V1mNwObKZkqqmqhuaidk4ILHrB7/\nuGQPh42zzxnYl5cWjU0M332sRwZKHbo06I9SPQVkp0OYlBHPpIx4FkzrPDK46LGP8AVC/PDUw9hY\n2cSm3U1sqmpiySfdjwwmpscxZWwS2+taiXM7+aq8gYIxCZqKQqlDiF6yGcU6chJt3G2dL9hY2WSf\nO2ju9gCErucMCjvOG2QlkRLv1qMCpYaRXrKp+sTpECZnJjA5M4EzZowLL7/wsY9o94f4wckF1hBR\ntTVUtPc5g8zEWHyBIHFuJ898XEah3ShkJcb2+IQzbSCUGn4a9NU+HHbG0TNmZHPGjM7lHecMSqqb\n7PMFzby+toKaZh+3v7IuXC4lzh0+KigMHx0kYYzRx10qNcx0eEcdlIsf/xhjDA9fOse+4ayp241n\nXR9y7xCIczs57fBx4VQUhWMSyc2Ix+107LNd0KMCpfZHh3fUkOsalMeleDi+KLPb57XN7ZRUWUNE\nDy/bTJsvyCeltfzji53hMm6ndWlqYVbnkUFLe0CfcKbUINCgrwZVRmIsGYmxHJWfwaurrUR1z11/\nDM3tAbbYRwMl1dZ0U2UT/15fGc5PBHDcvW93GyYqHJNIYVYiaQkx4TJ6VKBU5DToq2GRGOviiImp\nHDExtdtyXyBEWW0LP3h2FV5fkDm5aZRUNfPp1u4pKTISYiiwh4gqGrzEuZ1UNLQxLtmz3/MG2kCo\naKdBXw2ZSAJtjMvBYWOTyEiIgQR4+NLZAIRChp31bZRUN3ceIVQ188baCupb/QAcc8/bJMW6KBxr\np6QYkxSen5AapyeRlUJP5KpRzhjDdx79iDZfkMuOmhS+E3lzVRM1zZ0nkRNinBSOSWRnfRtxbie/\nOmc6BWMSmZS+70nkDnpUoEY6PZGroo6I4HY6cMc5uPKYvG6f1bX4wlcUdTQEDW1+app9LFyyEgCX\nQ5iUHk9+ViIFWQkUZCWSn5VAflZin+uijYQaDTToq1GvtyCbnhDD/MnpzJ+cHl528eMfEwiG+OU5\n0ymtbmFLdTOl1S2U1jTz/qZqfMHO8wYuO8fRLc+tZmJ6PJPS48nNsKZZST3fgKbUSKdBX0Udl9PB\n7ElpzJ6U1m15RyrrjsbgifdLafPbl5iu3knXkVCP28HENKsR6GgQ9rT68Lic+AIhYlw9Dxl10KMC\nNVw06Kuosr8g2zWV9clTx/DvryvD67QHguzc08a2ulZ21LWyvbaV7XXW66MttbT6guHtTP3VG4xP\njWNyZgJ5GQnkZsRb85kJTEyLP2CDsDdtINRA0qCvVARiXU7ysxJ7HOs3xlDb4uOqJz/F6w9xTnE2\nZbWtlNW28PLqnTR5A+GyDoEJaXE0tPqJi3Gy5OOy8J3JOmSkhoIGfaV6EWnPWkTITIwlyeMmyQO3\nnDYl/Jkxhj2tfrbWtLCttoWymha21rby9vpKqpva+VWXnEVJHhcFWZ3pKQqyEigck9innEV6VKAO\nRIO+UoNIREhPiCE9IYa5uZ3nEPbOWbSl2nqVVDWzvKSav68q79wGEOt28L3Fn5OXYQ0TdQwXZSd7\ncDj6d3SgDUR00qCv1ADpa/AUEcaleHrMWdTo9VsnlKuauf/NjXj9Qcr3tLG8pKbbncmxLge5GfHh\nxqCq0YvH7aSq0avDRapHGvSVGgYHaiCSPW5mTUxl1sRUnl+xI7xOKGSobPKytaaFshrrvMHWGuv1\n7qZqfPbzDub/ZhmJsS4mZyaQn5VgTxPJt48SEmL79qevRwWHDg36So0iDoeQnRJHdkocxxZ0/ywY\nMnznTx/iDYS4dP4kttZ
"text/plain": [
"<matplotlib.figure.Figure at 0x7fa46017c0b8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for i in [evodumb, evohalfherd, evoherd, evoherdwise, evowise]:\n",
" i['mean'].plot(yerr=i['std'])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-01T13:27:56.226662Z",
"start_time": "2017-11-01T14:27:55.987887+01:00"
},
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAEXCAYAAADP3/fJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8FdX9//HX596sQAKEsG8RxS0aURGVuuCu1f60rmgr\n4F5btFXbSrW1ai0utWqt/dalWK2iKGhbtVo3oIiiCIoIiLIqO2ELCdmT8/vjTJKbm5vcG5aEyPv5\neNzHnTtzZubMzJkz85kzM9ecc4iIiIiIiEjLCbV2BkRERERERPY0CsRERERERERamAIxERERERGR\nFqZATEREREREpIUpEBMREREREWlhCsRERERERERa2Lc6EDOzH5jZWy00rxwzc2aW1BLz2xnM7Ckz\nu6uF5uXMbJ+WmFc8zd1WO7KedtU6bsmy/W1hZlPN7Mqge6evvx0pV2Z2rJl9GTFsPzP71MwKzex6\nM0s3s1fNrMDMJu7MfLdVZrbczE5u7Xw0xsz6mVmRmYVbOy9NMbNhZrayFef/fTNbEayrQ1srHzuT\nmc03s2GtnY8aLXmsbw27+/K1lbqgOcxslJlN34XTb3Pn1NsroUDMzC4xs1lBQVpjZm+Y2TG7OnM7\nyjk33jl36q6Y9q48CWjswBh5IvltEixXaXDSudXMZpvZGDNLbe287a52ZdneE+xu6885955zbr+I\nXr8EpjrnMpxzDwPnA92BLs65C1olk9IszrlvnHMdnHNVrZ2X3dz9wOhgXX3a2pmpsSPHeOdcrnNu\n6k7OUqtr7jmImd1uZs/uyjy1BbuyLgjWcUVwfl7zGRAxfFBwTlUcfA+KGHZJcE6/LPLCgZntbWYf\nfJsCx51lV5yHxw3EzOxG4CFgLP5EoB/wf8DZOzMjO9ueEEUnqo2si9HOuQygJ3ATMBx43cysdbO1\nZ9ldysruko9W1B+YH/X7K+dcZXMnpHXZtFjrp7nrTOvY2871EF3WRaR5XggCvZrPUgAzSwH+DTwL\ndAaeBv5tZinBvnoPcBhwHfBIxPQeBm5sqYtIe3z96Zxr9AN0BIqAC5pIk4oP1FYHn4eA1GDYMGAl\n/uruemANcA7wXeArYBNwS8S0bgcmAS8AhcAnwCERw8cAS4JhC4DvRwwbBbwPPBhM966g3/SINA74\nEbAI2Az8BbBgWBj4I7ABWAaMDtInxVjmZ4BqoCRYP78EcoL0I4FvguncGjFOKCL/G4EXgaxG1ukw\nYGWM/lOBKyN+nwXMAbYAHwB5EcOWAzcDc4EyIAk4NFinhcE6ngDc1Uge9gYmB3ndAIwHOkVN/+fB\n9AuC6aVFDP9FsL1XA5cH62afRuZVb7mCfv2AYuCs4PdTkXmNXkdBfn4R5GcbMA5/4eCNYHnfAToH\naWu21dVB/tYANzVRxp8CHgXeDqb1P6B/xPD9g2GbgC+BC6PG/Qvwn2Dcj4C9I4b/CVgBbAVmA8cG\n/Xvhy1dWRNpDg22RTMOyPRT4ONgWHwNDo9bNyVH72bNR6+IKfLmdBqThK+6N+LL1MdC9qbqiGeXi\nKmBxsK5eAXpF7Z8/we+fyyL6/TjoVwj8Dl82ZwTr7EUgJUjbGXgNyMfv368BfWKVs8j1h99/iyI+\nFcBTEXXguKCMrMLXK+GIOuP+YJssDfIes86I2H4x9z8iyjN+v6sCSoP8PA+UB/kqAq4I0l0OfBEs\n65vUL5Ox1uWOlNPciHHXEdTbNK9eS2T7/A5fjxcCbwHZEcMvBb4O5nMrUeU6al6pwbb5Jsjvo0B6\n5LrG149r8fV5g37bU16j8pATWR7iLV+sYwD+olTNsfOyJo4Fo2h4rEt0v6mZ1y34srwc+MH2rssY\nyxICfh1su/XAP/D7VSq+PDt8nb2kkXURs44MhqXjTy434/eFX1L/uNALeAlf5pYB10fVgy8G+SnE\nB4ODg2GxjvEJ14tElM2m5tPIuE3tp2cCnwbrYgVwe9S4x+DPBbYEw0clsn9HTSPmcgK/p3699EhT\n2wc4nfr11mfx6tQY+Sgh2EeCMlQJZAa/7wIeSrD+2u66L9Z+2cS2HgLMCtbFOuCB7akLgBHU1XW/\noem67naC43mMYacG69gi+n0TbJvuwIyIdV0cdJ8PPN5Y+Yyuc/B1w2b8/nVGxPCmjp2jaHi+3tzj\naVPxQJPn8wnkLeZyEWMfACxYjvX4c565wEHx1l+9ZYmzok/HF/yYKyJIcyfwIdAN6IqvBH4XUWgr\ngdvwJ49X4SvE54AM/MG9FBgQUaAqgoKQjD+hWwYkB8MvwFesIeAifOXdM2LlVeIj+yR8BT2Khgen\n14BO+BP9fOD0YNiPgo3ZB3/C8E6cQrCc+ie3OUH6J4J5H4IPgA4Ihv8sWE998Aegx4DnE93ZI3be\nmhPJw4INfyS+0I0M8pQakb85QN8gPyn4HfuGYN2eH6zrxgKxfYBTgrx2xZ+gPxS1/DOD7ZGFPwj+\nKKLcrAMOAtoH29vRjEAs6D8NuDeisowXiH2Ir1x6B+vmE/zJbyr+5Pa3Udvq+SB/BwdlobGK7in8\nzn5cMK0/UXcS3x5/ELoMX+4Ow+/8uRHjbsJX0En4gHZCxLR/CHQJht2EP5lJC4ZNBq6KSPsH4NHI\nyiLozsJXGJcG07k4+N2lkbJ6Ow0DsX8Ey5IOXAO8CrTDl63DqTv4jQFea6I+aKpcnBism8OC9fhn\nYFrU/vl2MF56RL9XgEx8fVEGvAsMwFemC4CRQdouwHlBvjOAicC/Gtl/atdfVP774oPz7wa//4Xf\nV9vj67iZwDURdcbCYJwsYAqNX7xpcv+jYXmuzWv0Ngt+n4MPEA4ItvmvgQ8aW5fsQDkN1uUafPlM\nC34fuR31WiLbZwmwb5DnqcA9wbAD8Qe+mn3wAXx939g++xC+3GQF83oVuDvquHRvMK30Rvo1u7xG\n5SGHhidfMZevkWNAJf74moy/eFlM3cWk6PIxiobHukT3m5p5PRAs5/H4Y+t+27MuYyzL5fiyOgDo\nALxMRMBGE8eGBOrIe/AXxjrjy+Bc6i5ohPCBwW34/W8A/gTvtIh9qjRYt2HgbuDDqLosst5stF5s\npB48OZH5RI0Xbz8dhj9ehYA8/HH2nGBYP/xx6mJ8mekCDErkOBSVh6bq/6k0vGja1Pa5nagggSbq\n1Bh5mQacF3S/hd9/zogY9v0E6q8dOkbH2C+bCsRmAJcG3R2Ao5pbF1BX1x2DL7f3448VTQViBcEy\nzAeujRh2A/BGVPrXgu0UwjeI9AG+hw+4O+DPG7s0tj9G1TkV+PP6MHAt/thZ07jR1LFzFA3P1xM+\nngbTaCoeaPJ8PoG8NbVcU6lf956Gr2c64YOyA2rykegn3or+AbA2TpolBCctEZlaHlFoS6iLNDOC\nlXFkRPrZ1FUkt1O/IgzhTwCObWTec4CzI1beNzEKSvTB6ZiI3y8CY4LuyURUBsDJcQrBcmIHYpFX\neGcCw4PuL4CTIob1DDZ2rJO2YfircVuiPpXUnUj+lSDgjRjvS+D4iPxdHjHsuMjCFPT7gEYCsRh5\nOgf4NGr5fxjx+z7qgoQniTjBwFc2jR5sowt2RP8JwBNB91PED8Qir+K+BPw14vd1BCd9Edtq/6j8\nj2skf09RP3jqgL8q0hdfAbwXlf4x6oK+p4C/RQz7LrCwifW8maAVGLgSmBx0G/5gclx02cYHYDOj\npjODuquhy4kfiA2IGH45US2siX7ilItxwH1R67ECyInYP0+Mmp4DvhPxezZwc8TvPxJxgSBq3EHA\n5ljljBiBGP5gUDt9fFBfRsTJJf4kZ0rQPZkgyAx+n0rjgViT+x/ND8TeIGgZC36H8Cfq/WOtS3ag\nnAbL/Gn0MgXDEq7XEtw+v474/WPgv0H3bdTfB9vjr7Y3ODnB7yvbqH9F/GjqWgaHBeNGttTG6tfs\n8hqVjxwannzFXL4Y4w7DHzuTIvqtp+7ELrp8jKLhsS6h/Ya6YKp9xPAX8Vfim70uYyzLu8CPI37v\nF1lGiBOIxZheZB1ZG1g
"text/plain": [
"<matplotlib.figure.Figure at 0x7fa46019e748>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"diff = evodumb['mean']-evohalfherd['mean']\n",
"m = evodumb['max'].loc[0].sum()\n",
"diff = diff / m\n",
"diff.plot(yerr=(evodumb['std']+evoherd['std'])/m,\n",
" title='Comparing the Herd and Dumb behaviours: normalized difference and error in number of agents in each state when using 50% herd agents.');"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-01T13:28:05.554284Z",
"start_time": "2017-11-01T14:28:05.324360+01:00"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAEXCAYAAADcCLc9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8FdX9//HXyR4gISQB2QmrlWhkRxERN9AWv1WkSrUo\n2Fa0It+2tt/Sn62itWittdraWjdKa6FY0Vr1a79SBUQUZTcCKiCELazZA0nIcn5/nEm4ublJbkjC\nTcL7+XjcRzL7mZkzZ+Yzc+aMsdYiIiIiIiIiLUdYqBMgIiIiIiIi1SlQExERERERaWEUqImIiIiI\niLQwCtRERERERERaGAVqIiIiIiIiLYwCNRERERERkRamTQdqxpibjTFLT9OyUowx1hgTcTqW1xSM\nMQuMMQ+dpmVZY8yA07Gs+jR0XzVmOzXXNj6debutMMasMMZ8x/u/ybdfY/KVMeZiY8wXPsPONsZs\nNMYUGGNmG2NijTFvGGPyjDEvN2W6WytjTIYx5opQp6M2xpjexphCY0x4qNNSF2PMeGPMvhAu/zpj\nzF5vWw0NVTqakjFmizFmfKjTUel0nutDoaWvX2spC5qS7/m2meY/1xjzt+aaf0sSVKBmjLnJGLPO\ny2gHjDH/NsaMbe7ENZa1dqG1dkJzzLs5LxJqO3E2d8YPFW+9ir2L0nxjzHpjzBxjTHSo09ZSNWfe\nPhO0tO1nrX3fWnu2T6//AVZYa+Ostb8DpgBnAUnW2m+EJJHSINbaPdbaDtba8lCnpYV7DJjlbauN\noU5Mpcac4621qdbaFU2cpJBr6DXImXQxXZfmLAuMMZcaY5Z7N/EyAgxP8YYfN8Z87p+njTE/MMYc\n9KafX3ndZYyJMMYsNsbketf8cT7T3GuM+UFTr0tr11wPbOoN1IwxPwSeAObhLhR6A38Evt6UCWlq\nrenJVnNrJdtilrU2DugG3ANMBd4yxpjQJuvM0lLySktJRwj1Abb4dW+z1pY1dEbalnULtH0aus20\njZ1T3A7+eV1EgncMmA/8uJbhfwc2AknAvcASY0xnAGPMRGAOcDmQAvQDHvCmmwxYIBnIB2Z60/QF\nrgF+3/SrUpNx2nTtv3pZa2v9AR2BQuAbdYwTjQvkMr3fE0C0N2w8sA93d/gwcAC4FvgqsA3IBv6f\nz7zmAkuAl4ACYANwvs/wOcCX3rCtwHU+w6YDHwC/9eb7kNdvlc84FrgD2A7kAH8AjDcsHPgNcBTY\nBczyxo8IsM4vAhVAkbd9/geXyS1wK7DHm8+9PtOE+aQ/C/gHkFjLNh0P7AvQfwXwHZ/uScAmIBf4\nEEjzGZYB/ARIB0qACGCot00LvG28GHioljT0B5Z5aT0KLAQS/Ob/I2/+ed78YnyG/9jb35nAbd62\nGVDLsqqtl9evN3AcmOR1L/BNq/828tLzYy89x4AXcDcW/u2t7ztAJ2/cyn11u5e+A8A9deTxBcCf\ngP9483oP6OMz/CvesGzgC+AGv2n/APyvN+3HQH+f4U8Ce3EF4XrgYq9/d1z+SvQZd6i3LyKpmbfH\nAGu9fbEWGOO3ba7wO87+5rctvo3LtyuBGOBv3r7P9eZ3Vl1lRQPyxXeBHd62eh3o7nd83oU7Pnf5\n9Pue168A+AUub672ttk/gChv3E7Am8AR3PH9JtAzUD7z3X6447fQ51cKLPApA1/w8sh+XLkS7lNm\nPObtk51e2gOWGT77L+Dxh09+xh135UCxl56/Aye8dBUC3/bGuw34zFvXt6meJwNty8bk01SfaQ/h\nlds0rFwLZv/8AleOFwBLgWSf4dOA3d5y7sUvX/stK9rbN3u89P4JiPXd1rjy8SCuPK/R71Tyq18a\nUnzzQ33rF+gcgLtpVXnunFHHuWA6Nc91wR43lcv6f7i8nAHcfKrbMsC6hAE/8/bdYeCvuOMqGpef\nLa7M/rKWbRGwjPSGxQJ/weWnz3DHsu95oTvwCi7P7QJm+5WD//DSU4ALFkd4wwKd44MuF/HJm3Ut\np5Zp6zpOv4a76M73tslcv2nH4q4Fcr3h04M5vv3mEXA9gV9SvVx6qq79A1xF9XLrk/rK1ADpKMI7\nRrw8VAbEe90PAU8EWX6dctkX6LisY1+PAtZ52+IQ8PiplAXALZws635OHWWdzzRXABl+/Qbhrv/i\nfPq9D9zh/b8ImOcz7HLgoPf/T4CZ3v93AH/0/n8DGFtXWoJcxws4mVc/Acb7TftLb9oiYADQF3ft\nVeDty6fwrmMCLLu+c01f3LVO5bXhH3znFUTaAq4Xroy0nLyWuNBL+3u466GjwEv1bbsa61PPhr4K\nd2AEvPDwxnkQ+AjoAnT2Vu4XPpm6DLgPd3H5XW/DLQLicCf/YqCfT4FWiqvmE4m74NsFRHrDv4Er\neMOAG3GFezdv2HRvWXfjgpJYAp+83gQScIHAEeAqn4y4Fejp7eR3qPuiK4PqF78p3vjPecs+H3eA\nnOMN/763nXriTlDPAH8PtjDwySCVF5rDcCe90bgLxlu9NEX7pG8T0MtLTxTuwP+Bt22neNu6tkBt\nAHCll9bOuEz9hN/6r/H2RyLuJFl58F+FK6TOBdp7+9vSgEDN678S+JVPYVpfoPYR7oTSw9s2G3AX\nx9G4i9/7/fbV3730neflhdou+hbgDshx3rye5ORFfnvcSWoGLt8Nwx2MqT7TZuMK8AhcwLvYZ97f\nwt3pisBdlB3EC2y8NH/XZ9xfA3/yye+VaUjEFUbTvPl80+tOqiWvzqVmoPZXb11icXfO3gDa4fLW\ncE6eHOcAb9ZRHtSVLy7zts0wbzv+Hljpd3z+x5su1qff60A8rrwoAd7F3fnriDtmb/XGTQKu99Id\nB7wMvFbL8VO1/fzS3wsXvH/V634Nd6y2x5Vxa6h+8vrcmyYRWE7tN3fqPP6omZ+r0uq/z7zua3EB\nxDnePv8Z8GFt25JG5FNvWx7A5c8Yr3v0KZRrweyfL3EXF7Fe9yPesMG4E1/lMfg4rryv7Zh9Apdv\nEr1lvQE87Hde+pU3r9ha+jU4v/qlIYWaF2cB16+Wc0AZ7vwaibu5eZyTN5v888d0ap7rgj1uKpf1\nuLeel+DOrWefyrYMsC634fJqP6AD8Co+AR11nBuCKCMfwV0EdcLlwXRO3vAIwwUO9+GOv364GyoT\nfY6pYm/bhgMPAx/5lWW+5Wat5WIt5eAVwSzHb7r6jtPxuPNVGJCGO89e6w3rjTtPfROXZ5KAIcGc\nh/zSUFf5v4KaN1Xr2j9z8buYpo4yNUBaVgLXe/8vxR0/V/sMuy6I8qtR5+gAx2VdgdpqYJr3fwfg\ngoaWBZws68bi8u1juHPFqQRq1wGf+fV7Cvi99/8nwI0+w5K9dCbhbgq85KXhJdxNqeuAP9eVjiDL\n8x64IPSruLx8pdfd2WfaPbiyKwKXn1dzsowah8vrtQVq9Z1rVnvbNcrbzvmcvCYKJm21rVe1/ez1\n+zvuxmIY7vxZb5BbY33q2dA340XXdYzzJd5Fjdc9sTKz4DJ1ESfvQMd5KzHaZ/z1nCxo5lK9oAzD\nXSBcXMuyNwFf9/6fDuzxGz6dmievsT7d/wDmeP8vw6ewwGX6gBdd/gen3w7yjdrXAFO9/z8DLvcZ\n1g138AW6qBuPu5uX6/cr4+SF5tN4AbHPdF8Al/ik7zafYeNwF6DGp9+H1BKoBUjTtcBGv/X/lk/3\no5wMIubjcwGCy9C1noypPVBbDDzn/b+A+gM137vArwBP+3TfjXeg+uyrr/il/4Va0reA6sFVB9yd\nxV64Gwbv+43/DCeDwgXA8z7Dvgp8Xsd2zsF7igx8B1jm/W9wJ5tx/nkbF6Ct8ZvPak7eTc2g/kCt\nn8/w2/B7Qhvsr5588QLwqN92LAVSfI7Py/zmZ4GLfLrXAz/x6f4NPjcQ/KYdAuQEymcECNRwhW7V\n/HFBfwk+F5+4i6Dl3v/L8IJQr3sCtQdqdR5/NDxQ+zfekzWvOwx3Id8n0LakEfnUW+eN/uvkDQu6\nXAty//zMp/t7wP95/99
"text/plain": [
"<matplotlib.figure.Figure at 0x7fa45f75d978>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"diff = evodumb['mean']-evoherd['mean']\n",
"m = evodumb['max'].loc[0].sum()\n",
"diff = diff / m\n",
"diff.plot(yerr=(evodumb['std']+evoherd['std'])/m,\n",
" title='Comparing the Herd and Dumb behaviours: normalized difference and error in number of agents in each state when using 100% herd agents.');"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-01T13:32:12.118102Z",
"start_time": "2017-11-01T14:32:11.479970+01:00"
}
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa45f950e10>"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEKCAYAAAAW8vJGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VNX5wPHvm4VA2JcgO4kQdkICAwHcRVmsigsqWAEV\nRRGK1m5oN/TX1n0pKlYUFBEFRIqItlAFqyiEhH0NBAgS1kAgJISs8/7+mIEmIcsEEiYzvJ/n4XHu\nuefc+57eZt652zmiqhhjjDFnBHg7AGOMMdWLJQZjjDFFWGIwxhhThCUGY4wxRVhiMMYYU4QlBmOM\nMUVYYjDGGFOEJQZjjDFFWGIwxhhTRJC3A6iIJk2aaHh4uLfDMMYYn7JmzZqjqhrmaX2fSgzh4eEk\nJCR4OwxjjPEpIrK3IvXtUpIxxpgiPEoMIjJYRBJFJElEJpWwPkRE5rrXx4lIuLu8sYgsF5FMEXmz\nWJsaIjJNRHaIyHYRubMyOmSMMebClHspSUQCgbeAG4EUIF5EFqnq1kLVxgDHVbW9iAwHXgDuAbKB\nPwLd3P8K+z1wRFU7iEgA0OiCe2OMMeaCeXKPoQ+QpKq7AURkDjAUKJwYhgKT3Z/nA2+KiKjqKWCF\niLQvYbsPAp0AVNUJHD2fDuTl5ZGSkkJ2dvb5NDeVqGbNmrRq1Yrg4GBvh2KMuQCeJIaWwL5CyylA\nbGl1VDVfRNKBxpTyZS8iDdwf/09ErgV2ARNU9XAJdccCYwHatGlzzrZSUlKoW7cu4eHhiIgH3TFV\nQVU5duwYKSkpREREeDscY8wF8OQeQ0nftsVn9/GkTmFBQCvgB1XtCawEXi6poqpOU1WHqjrCws59\n2io7O5vGjRtbUvAyEaFx48Z25maMH/AkMaQArQsttwIOlFZHRIKA+kBaGds8BmQB/3Qvfwr09CCW\nEllSqB7sOBjjHzy5lBQPRIpIBLAfGA7cW6zOImA0rl/+w4BlWsacoaqqIvIFcC2wDBhA0XsWxhjj\n944e2seu7+cSmrSYsJx9ZAbW51RwI3JrNiG/VhhSJ4ygepcRUr8ZdRo3o16TljRo3IzAoKp9Ba3c\nrbvvGUwAlgCBwAxV3SIizwIJqroImA7MEpEkXGcKw8+0F5FkoB5QQ0RuAwa6n2j6nbvN60Aq8EDl\ndu3CiQhPPvkkr7zyCgAvv/wymZmZTJ48ucr2GR4eTq9evfjss88AmD9/PosXL+aDDz6osn0aYy6e\n1APJ7P7uE+rs/pJOOZuJFWWftGBf/Z7UyD1BaG4azbJ30/D4CWpIwTntC1Q4LI04VKsdWY26EtKq\nB5d17EPztp0ICAyslBg9Sjuq+hXwVbGyPxX6nA3cVUrb8FLK9wJXexqoN4SEhLBgwQKeeuopmjRp\nctH2m5CQwJYtW+jatetF26cxpuoc+mknySvmUH/PV3TO20oYkBzQhtVtHqJZv3sI79SL1gFFr+yr\n00n6iWOcSN1P5rEDZJ84SF76YTTzCMEZKTTO3EHXlASC9jshDjK0FvtqtONkg84EtOhB4/a9ad0h\nmhohNSscr08NiXGxBQUFMXbsWF577TX++te/Flm3d+9eHnzwQVJTUwkLC+P999+nTZs23H///dSr\nV4+EhAQOHTrEiy++yLBhwwB46aWXmDdvHjk5Odx+++0888wzJe7317/+NX/729+YPXt2kfK0tDQe\nfPBBdu/eTWhoKNOmTSMqKorJkyfz008/sXv3bn766SeeeOIJJk6cCMBHH33ElClTyM3NJTY2lqlT\npxJYSb8qjDGlSz2QzK5vZtBw77/pmJ9IM2BXYAQr2z5Ki373EN6pJ+FltJeAAOo3CqN+ozAgusQ6\n2adPsWf7Go7vSkAPbaL+iW1EHVlEaOqnsAFyNYikoLYVjt0SQznGjx9PVFQUv/3tb4uUT5gwgVGj\nRjF69GhmzJjBxIkTWbhwIQAHDx5kxYoVbN++nVtvvZVhw4axdOlSdu7cyerVq1FVbr31Vr777juu\nvvrck6a7776bqVOnkpSUVKT8z3/+MzExMSxcuJBly5YxatQo1q9fD8D27dtZvnw5GRkZdOzYkXHj\nxpGUlMTcuXP54YcfCA4O5rHHHmP27NmMGjWqiv7XMsao00n8P/9Ol40v0FdOszMokpWXT6R1/3to\n174b7SpxXzVr1SYy5mqI+d/3SEF+Pj/t3syRnfHkpaynTlrFb99aYihHvXr1GDVqFFOmTKFWrVpn\ny1euXMmCBQsAGDlyZJHEcdtttxEQEECXLl04fNj1asbSpUtZunQpMTExAGRmZrJz584SE0NgYCC/\n+c1veO655xgyZMjZ8hUrVpy993D99ddz7Ngx0tPTAfjZz35GSEgIISEhNG3alMOHD/PNN9+wZs0a\nevfuDcDp06dp2rRpZf7PY4wpJPVAMgc+fIg+2fFsCelBvbveIDKyB5EXMYbAoCDadIimTYdCZxlP\nV+yJQUsMHnjiiSfo2bMnDzxQ+v3xwo9qhoSEnP185uEsVeWpp57ikUce8WifI0eO5Lnnnityn6Gk\nB73O7LfwPgMDA8nPz0dVGT16NM8995xH+zTGnB91Olmz+B06rP0/OmgecZ0n0fuu31bazeCLzUZX\n9UCjRo24++67mT59+tmy/v37M2fOHABmz57NlVdeWeY2Bg0axIwZM8jMzARg//79HDlyBIABAwaw\nf//+IvWDg4P55S9/yeuvv3627Oqrrz573+Hbb7+lSZMm1KtXr9R9DhgwgPnz55/dT1paGnv3Vmj0\nXWNMOY4e2sf6l2/GsXYSB4LbcnTkMmKHP+WzSQEsMXjsV7/6FUeP/m+EjylTpvD+++8TFRXFrFmz\n+Pvf/15m+4EDB3LvvffSr18/unfvzrBhw8jIyMDpdJKUlESjRueOIThmzBjy8/PPLk+ePJmEhASi\noqKYNGkSM2fOLHOfXbp04S9/+QsDBw4kKiqKG2+8kYMHD1aw58aY0qz56n0C/9GPLqdWs6r9E0T+\n7ntat+/u7bAumJTxHlq143A4tPhEPdu2baNz585eiujCbd68mRkzZvDqq696O5RK4evHwxhPnDh6\niF0zH6VXxnJ2BHUg5M5/0LZzL2+HVSoRWaOqDk/r2z0GL+vWrZvfJAVjLgXr//MxrX54iu6awcqI\ncfT++bMEBdfwdliVyhKDMcZ4ID8vl7VvP0iftC/YFRhB+m1z6de9r7fDqhKWGIwxphwF+fmse/Pn\n9Elfysrmo+h1/0vn9Uaxr7DEYIwxZXAWFLDmrVGupND2Ufo98IK3Q6py9lSSMcaUQp1O4qc+SJ/j\nX7Ky1YOXRFIAO2MwxniBOp0krl3OyeQNhDaPpFlEFI2btUYCqs9vVXU6ifvHo/Q9tpBVzX5O3wdf\n8XZIF031OQo+7PTp01xzzTUUFBRw4MCBs4PmFXfttddS/HHbqvT666+TlZVV4Xb3338/8+fPB2D4\n8OHs3LmzskMzl6hjh1NY9dFkfvpLFJ0W30Gfzc/Q7T/30WRaFJnPtGDHX3oT/9pdrPrgadYtmcne\nbWvIzbn4swKq08mq9x6n75G5rAq7i9ixb1arpFXV7IyhEsyYMYM77riDwMBAWrRocfZL1dtef/11\n7rvvPkJDQ89ZV1BQ4NEoq+PGjePFF1/k3XffrYoQzSUgPy+Xzd8tQNfOolvmSvpKAduDOrO662Ra\nxgwkLSWJrANb4egOamfspm16Ak3Tl0IysBLyNYB9Ac04WiuCnFb9uSx6EOGdelXpF/Wq939LvwMf\nEtd4KLHjpl1SSQH8LDE888UWth44Wanb7NKiHn++pex5EWbPns3HH38MQHJyMjfffDObN2/m9OnT\nPPDAA2zdupXOnTtz+vTpcvd37bXXEhsby/Llyzlx4gTTp0/nqquuoqCggEmTJvHtt9+Sk5PD+PHj\neeSRR/j22295+eWXWbx4MeAa9dXhcHDy5EkOHDjAddddR5MmTVi+fDl16tThySefZMmSJbzyyiss\nW7aML774gtOnT9O/f3/
"text/plain": [
"<matplotlib.figure.Figure at 0x7fa460d17c18>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEKCAYAAAAW8vJGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VdW1wPHfyhwgIZCEMYFECEOAMIVRxQFFbK1o5Vmc\nQMBiEURrXyvW1lLbPpXiULVaB1BELCoiokVxAGtRhoSZAIFAGEIYAoGQEDKv90cuNAkZbiDh5t6s\n7+eTj/fus/c+a3PMXTn7nLuPqCrGGGPMWV6uDsAYY0zDYonBGGNMOZYYjDHGlGOJwRhjTDmWGIwx\nxpRjicEYY0w5lhiMMcaUY4nBGGNMOZYYjDHGlOPj6gBqIywsTKOiolwdhjHGuJV169YdU9VwZ+u7\nVWKIiooiMTHR1WEYY4xbEZF9talvU0nGGGPKscRgjDGmHEsMxhhjynGrawyVKSwsJC0tjby8PFeH\n0ugFBAQQERGBr6+vq0MxxlwEt08MaWlpBAUFERUVhYi4OpxGS1U5fvw4aWlpREdHuzocY8xFcPup\npLy8PEJDQy0puJiIEBoaamduxngAt08MgCWFBsKOgzGewe2nkowxxpOUFBeTmZHOySP7yMk4QH7m\nAUqy0vE5fZiAM0cIKswgsCSXLJ9QTvu3oqBJGzSoHT4tImgS1oHmraMIbduBgMCmFxyDJYZqiAiP\nPPIIzz77LACzZs0iJyeHGTNm1Ns+o6Ki6N+/Px999BEACxcu5LPPPuPtt9+ut30aY1wj59QJUtZ+\nQf6Or2ietZ2QwgxaaiZhUkxYmXrFKhyXFpz0CeNEYEcyfIPwzztGyJkDhJ7eQHDG6fP6ziSYTO9w\ncvxb1TouSwzV8Pf3Z9GiRTz22GOEhYXV3KCOJCYmkpSURI8ePS7ZPo0x9a+4qIjdm7/n+ObPaZ6+\nkpj8bfSRYnLVn1T/Lhxo3pfUpm3wCm6HX8tImoZF0qJNR1q2iqCVjw9VfcSfzj7J8UN7OXVkH2eO\nH6DoZBpe2Yfwzz1MUP7hWsdpiaEaPj4+TJo0ieeff56//OUv5bbt27ePCRMmkJGRQXh4OG+99RYd\nOnTg3nvvJTg4mMTERA4fPszMmTMZPXo0AH/961/54IMPyM/P59Zbb+WPf/xjpfv93//9X/7v//6P\n+fPnlyvPzMxkwoQJ7NmzhyZNmvD6668TFxfHjBkz2L9/P3v27GH//v08/PDDTJs2DYB3332XF198\nkYKCAgYNGsQrr7yCt7d3PfxrGePZTmQcYve8qQTmHeGMfyuKmrSC4Lb4hLQjsEV7gltFEtqmA02a\nNS/X7vD+XexP+BfeqSvolJNIF3IASPHuRGL7uwjqMYKY/sPpEdDkgmNrGhRC06A+0KVP5RWeqN31\nP0sMNZgyZQpxcXH85je/KVc+depUxo4dy7hx45gzZw7Tpk1j8eLFABw6dIiVK1eyY8cObr75ZkaP\nHs2XX37Jrl27WLt2LarKzTffzHfffcewYcPO2+ftt9/OK6+8QkpKSrnyP/zhD/Tt25fFixezfPly\nxo4dy8aNGwHYsWMHK1asIDs7m65duzJ58mRSUlJ4//33+f777/H19eWBBx5g/vz5jB07tp7+tYzx\nTDvXf0vwkonE6Ul2+3WhTU4Soaf+Q+CRgvPqZmsgmd6h5PiEElR0jA4lB2kDHKUlu0KuRDpfy2UD\nf0znVu3pfOmH4hRLDDUIDg5m7NixvPjiiwQGBp4rX7VqFYsWLQLgnnvuKZc4brnlFry8vIiNjeXI\nkSMAfPnll3z55Zf07dsXgJycHHbt2lVpYvD29ubXv/41Tz31FDfeeOO58pUrV5679nDttddy/Phx\nsrKyAPjxj3+Mv78//v7+tGrViiNHjvDNN9+wbt06BgwYAMCZM2do1ar2843GNFZaUsLahbPom/Q0\nx6Ul+275mO59h53blpWVyckj+8nOOMCZzIMUZR1Csg/hd+YoTfIzOOHXjvTIMbTp9yM6du1HKy/3\nuBHUEoMTHn74Yfr168f48eOrrFP2Vk1/f/9zr1X13H8fe+wx7r//fqf2ec899/DUU0+Vu85wtq/K\n9lt2n97e3hQVFaGqjBs3jqeeesqpfRpj/uvM6WySXhvPoFNfsSlwAFE/n0/b0NbntouXF81bhNG8\nRRh06+fCSOuee6QvF2vZsiW33347s2fPPlc2dOhQFixYAMD8+fO54oorqu3jhhtuYM6cOeTklM4v\nHjx4kKNHjwIwfPhwDh48WK6+r68vv/zlL3nhhRfOlQ0bNuzcdYdvv/2WsLAwgoODq9zn8OHDWbhw\n4bn9ZGZmsm9frVbfNaZROpCyhcPPXkG/rK9Z1fEX9Pr1MpqXSQqezhKDk371q19x7Nixc+9ffPFF\n3nrrLeLi4pg3bx5/+9vfqm0/YsQI7rzzToYMGUKvXr0YPXo02dnZlJSUkJKSQsuWLc9rM3HiRIqK\nis69nzFjBomJicTFxTF9+nTmzp1b7T5jY2P585//zIgRI4iLi+P666/n0KFDtRy5MY3L+mXzCJl3\nPS1KjrH1mtkMGf8MXo3shg2pbHqioYqPj9eKD+rZvn073bt3d1FEF2/r1q3MmTOH5557ztWh1Al3\nPx6m8SoqLCBx9sMMPjyfnT5dCLrnXdp27OrqsOqEiKxT1Xhn69s1Bhfr2bOnxyQFY9zVscP7OTrn\nTgYXbGFN6C30+fmr+F/E7aPuzqmpJBEZKSLJIpIiItMr2e4vIu87tq8RkShHeaiIrBCRHBF5uUz9\nJiLyLxHZISJJIvJ0XQ3IGGNqY9vqL9B/DCM6P5mEvk8x6MG5jTopgBNnDCLiDfwduB5IAxJEZImq\nbitTbSJwQlU7i8gY4BngZ0Ae8Hugp+OnrFmqukJE/IBvRORGVf384odkjDHVKyzIZ8s37+G/4S16\nFGwiTdqSPfp9BvQc5OrQGgRnppIGAimqugdARBYAo4CyiWEUMMPxeiHwsoiIqp4GVopIue9xqGou\nsMLxukBE1gMRFzMQY4ypyZG03aR+8Xc6pS2iHyc4RDiroqfQY9SvCA4JdXV4DYYziaE9cKDM+zSg\nYlo9V0dVi0QkCwgFjlEDEQkBfgJUeluPiEwCJgF06NDBiXCNMe7g7CqizYJbENCkWb3uJ2nlJxSt\neZNep1cRjrKlyQDSB0yk57DRtPWxS60VOfMvUtkiGxVvZXKmzvkdi/gA/wRePHtGcl4nqq8Dr0Pp\nXUk19WmMafh2rv838q9HiCkuXfYlT33Jlmac9mrGGe9g8n2DKfQNpti/ORrQAgkMwadpS3yDQgkI\nCqVJSDjNmocRFBKKj69fpfs4eewwO774BxG7F9BLD5FJMAnt76bj9VPoHd3tUg7X7TiTGNKAyDLv\nI4D0KuqkOT7smwOZTvT9OrBLVV+osWYDdubMGUaOHMny5cs5cuQI06ZNY+HChefVu/rqq5k1axbx\n8U7fNXZRXnjhBSZNmkSTJrW7kHbvvfdy0003MXr0aMaMGcOf/vQnYmJi6ilK05hkHT/Cjvd+zYBj\nSzguIay6bBpSUgx5J/HKP4lPwSn8C7MIyj9M09wUmmkOzeRMtX2eogk5EsRpryDyfIIp8GuOaDE9\nslcxWArZ7tuDxLhf0uv6exjSyC8qO8uZxJAAxIhINHAQGAPcWaHOEmAcsAoYDSzXGr4gISJ/pjSB\n3FfboBuaOXPm8NOf/hRvb2/atWtXaVJwhRdeeIG777670sRQXFzs1CqrkydPZubMmbzxxhv1EaJp\nJEqKi0lc8ndiNv2V/prD2ta30+OupxnS/PwvdlZUWJBP9slj5JzMIPfUcfKzMynMPk7R6Uz0zAnk\nzAl88k/iW5hFQOEpQnIO46f5bAz7Ma2ufYDuPeyCcm3VmBgc1wymAssAb2COqiaJyJNAoqouAWYD\n80QkhdIzhTFn24vIXiAY8BORW4ARwCngcWAHsN6x3s/LqvrmxQzmj58msS391MV0cZ7YdsH84SfV\nPxdh/vz5vPfeewDs3bu
"text/plain": [
"<matplotlib.figure.Figure at 0x7fa45f8fd4e0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdcVfX/x58f9hKUpQgC7o0iOHCPXGmOMnPP0kwzKysb\npvVrWGmZ2tfKnTu11DRTU9TcgAPFSQoyRBkKsi/3fn5/nCsigl6JK8PzfDzu497zOZ/xPhfueZ/P\ner2FlBIVFRUVFRVDMClpA1RUVFRUyg6q01BRUVFRMRjVaaioqKioGIzqNFRUVFRUDEZ1GioqKioq\nBqM6DRUVFRUVg1GdhoqKioqKwahOQ0VFRUXFYFSnoaKioqJiMGYlbUBx4OzsLL29vUvaDBUVFZUy\nRUhISIKU0uVxypQLp+Ht7U1wcHBJm6GioqJSphBCRD5uGXV4SkVFRUXFYFSnoaKioqJiMKrTUFFR\nUVExmHIxp1EQGo2G6OhoMjMzS9qUpx4rKys8PDwwNzcvaVNUVFT+I+XWaURHR1OhQgW8vb0RQpS0\nOU8tUkoSExOJjo6mevXqJW2OiorKf6TcDk9lZmbi5OSkOowSRgiBk5OT2uNTUSknlFunAagOo5Sg\n/h1UVMoPBjkNIUQPIcRFIUS4EGJaAecthRDr9eePCSG89eldhRAhQogz+vfOecr46dPDhRDzhP7O\nIoRwFELsFkJc1r9XKp5LVVFRedJIKTl18xQzDs+gz+Y+fH/ie+LS4krMnoycDDQ6TYm1Xx54pNMQ\nQpgCPwA9gQbAYCFEg3zZxgK3pJS1gO+Ar/TpCcBzUsrGwEhgZZ4yC4FxQG39q4c+fRqwR0pZG9ij\nPy51CCF4++23c49nz57NzJkzjdqmt7c3L7zwQu7xxo0bGTVqlFHbVFEpCokZiSw/u5x+W/oxfMdw\ndlzdQSXLSiw9u5Qem3owdf9UTt48iZTyidm0M2In3TZ2o9/mfpy4ceKJtVveMKSn0QIIl1JekVJm\nA+uAvvny9AVW6D9vBLoIIYSU8qSUMlafHgZY6XslboC9lPKIVP5rfgH6FVDXijzppQpLS0t+++03\nEhISnmi7wcHBhIWFPdE2VVQMIUeXw4HoA0wJnMIzG55hTsgcKlhUYGbATAIHBrKi5wq299/O8AbD\nORx7mBE7RvDStpfYEr6FLG2W0ey6nXmbd/a/w9T9U6lqVxWt1DLqr1F8HfQ1GTkZRmu3vGKI03AH\novIcR+vTCswjpcwBkgGnfHleAE5KKbP0+aMLqbOylPK6vq7rgGtBRgkhxgkhgoUQwfHx8QZcRvFi\nZmbGuHHj+O677x44FxkZSZcuXfDx8aFLly5cu3YNgFGjRjF58mRat25NjRo12LhxY26Zb775hubN\nm+Pj48OMGTMKbXfq1Kl88cUXD6QnJSXRr18/fHx8aNWqFaGhoQDMnDmTMWPG0LFjR2rUqMG8efNy\ny6xatYoWLVrQtGlTxo8fj1arLfL3ofL0EpUSxbwT8+i+sTsT90zk5M2TDK0/lM19N7Pq2VW8UOcF\nbM1tAfCo4MHb/m/z94C/md5qOtnabD469BHdNnZj/sn53Ey/Way2BV4LpN+Wfvx97W9e932d1c+u\n5rc+vzGw7kBWnlvJi3+8yKmbp4pcv5SSwzGHGf3XaNqsbcP7/7zPvqh9ZGuzi/EqSheGLLktaBYz\nf5/yoXmEEA1Rhqy6PUadD0VK+TPwM4C/v/+T6+PmYeLEifj4+PDuu+/elz5p0iRGjBjByJEjWbp0\nKZMnT2bz5s0AXL9+nYMHD3LhwgX69OnDgAED2LVrF5cvX+b48eNIKenTpw8HDhygffv2D7Q5cOBA\n/ve//xEeHn5f+owZM/D19WXz5s3s3buXESNGcOqU8mO4cOECgYGB3Llzh7p16zJhwgTCw8NZv349\nhw4dwtzcnNdee43Vq1czYsQII31bKqWdsMQw5p2Yx+n401iaWmJhanHv3UR5tzKzyk23NLUkNjWW\n4BvBmAgT2lRtw/u136eDRwfMTR++J8fG3IaBdQfyYp0XOXr9KGvOr2FR6CKWnllKV6+uDKk/hCYu\nTYq8iCIlO4Wvjn/F1n+3UqdSHX7q+hN1HesCYGZixketPqKrV1c+PvQxI3aMYESDEUzynYSVmZVB\n9eukjsCoQBaFLiIsMQxXG1faurflQPQBtl3Zhp25HZ09O9PduzsBbgGP/D7KEoY4jWigWp5jDyC2\nkDzRQggzwAFIAhBCeAC/AyOklP/mye9RSJ03hBBuUsrr+mGs4n30KEbs7e0ZMWIE8+bNw9raOjf9\nyJEj/PbbbwAMHz78PqfSr18/TExMaNCgATdu3ABg165d7Nq1C19fXwBSU1O5fPlygU7D1NSUd955\nhy+//JKePXvmph88eJBNmzYB0LlzZxITE0lOTgagV69eWFpaYmlpiaurKzdu3GDPnj2EhITQvHlz\nADIyMnB1LbBTp1LOiUyJZP7J+eyM2Ekly0o8V+M5JJIsbRZZ2iyytdm5n1M1qWRnZuemW5tZ87rv\n6/St2ZfKtpUfu20hBAFVAwioGkBUShRrL67l98u/syNiBx52HnTx7EIXry40cWmCiTBssefhmMN8\nfPhjEjISGOczjld9Xi3wpt3SrSW/9f2Nb4O/ZcW5FeyP3s//tfk/mro2LbTuHF0OOyN2svjMYsJv\nh+Nh58GMgBn0qdkHC1MLNDoNx64fY2fETvZc28PWf7dSwbxCrgNp5dbKKA4kR5fDpVuXOBN/hhyZ\ng42ZDTbmNoW+W5tZG/x95scQpxEE1BZCVAdigEHAkHx5tqJMdB8BBgB7pZRSCFER2A68L6U8dDez\n3iHcEUK0Ao4BI4D5+eqapX/fUqQre0JMmTKFZs2aMXr06ELz5H1asrS0zP18dxJQSsn777/P+PHj\nDWpz+PDhfPnllzRs2PCBugpqN2+bpqam5OTkIKVk5MiRfPnllwa1qVL+SMhI4MfTP7Lp0ibMTc0Z\n7zOeUQ1HYWdhVyL2VLOvxrvN32VS00nsuLqDv6/9zeoLq1lxbgVOVk508uxEF88utKzSssAbb5om\njTnBc9hwaQM1HGowt9NcGjk3emibtua2TA+YzjNezzDj8AxG/jWSkQ1GMtF3Ipam9343Gq2Grf9u\nZcnZJUTdiaKmQ02+bPclPbx7YGZy7zZqbmJOW/e2tHVvy8etPubI9SPsjNjJ3mt72fLvFipYVFAc\noWcXajjUwM3WrUhOJF2TTmhCKCdvnOTEzROExoeSnpP+WHVYm1k/OlMBPNJpSClzhBCTgJ2AKbBU\nShkmhPgUCJZSbgWWACuFEOEoPYxB+uKTgFrAdCHEdH1aNynlTWACsBywBnboX6A4i1+FEGOBa8CL\nRbqyJ4SjoyMDBw5kyZIljBkzBoDWrVuzbt06hg8fzurVq2nbtu1D6+jevTvTp09n6NCh2NnZERMT\ng7m5Oa6urnTp0oVffvkFd/d700jm5ua8+eabzJo1i86dlVXM7du3Z/Xq1UyfPp19+/bh7OyMvb19\noW126dKFvn378uabb+Lq6kpSUhJ37tzBy8urGL4VldLMnew7LDu7jFXnV6HRahhQZwDjm4zH2dq5\npE0DlKGrF+q8wAt1XiA1O5V/Yv7h78i/2X5lOxsvbaSCeQXaebSji2cX2rq3xcbchqC4IKYfmk5s\naiyjGo5iku+k+276jyKgagC/9fmNOSFzWBa2jH3R+/iszWfUrlSbTZc2sTxsOTfSb9DAqQFzO86l\nk2enRz6pm5ua096jPe092pOtzeZIrOJAdkfuZnO4MlwtELjauOJu5668KrhT1bYqHhU8cLdzx9XG\nFTMTM+LT4zl58yQnbypO4mLSRbRSi0BQp1Id+tTsQ7PKzWji0gRrM2vSc9JJ16STnpNORk5G7ud0\nzf3HQQQ99t/HIBkRKeWfwJ/50j7O8zmTAm7uUsrPgM8KqTMYeOAxQEqZCHQxxK7Swttvv82CBQty\nj+fNm8eYMWP45ptvcHF
"text/plain": [
"<matplotlib.figure.Figure at 0x7fa460444588>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"(evohalfherd['std']/m).plot()\n",
"(evodumb['std']/m).plot()\n",
"(evowise['std']/m).plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2018-12-04 08:54:29 +00:00
"version": "3.6.5"
},
"toc": {
"colors": {
"hover_highlight": "#DAA520",
"navigate_num": "#000000",
"navigate_text": "#333333",
"running_highlight": "#FF0000",
"selected_highlight": "#FFD700",
"sidebar_border": "#EEEEEE",
"wrapper_background": "#FFFFFF"
},
"moveMenuLeft": true,
"nav_menu": {
"height": "30px",
"width": "252px"
},
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 4,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false,
"widenNotebook": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}