1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-22 19:22:29 +00:00
soil/examples/terrorism/TerroristNetworkModel.py

228 lines
9.3 KiB
Python
Raw Normal View History

2019-02-19 20:17:19 +00:00
import networkx as nx
from soil.agents import Geo, NetworkAgent, FSM, state, default_state
from soil import Environment
class TerroristSpreadModel(FSM, Geo):
"""
Settings:
information_spread_intensity
terrorist_additional_influence
min_vulnerability (optional else zero)
max_vulnerability
prob_interaction
"""
2021-10-14 15:37:06 +00:00
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
2019-02-19 20:17:19 +00:00
2021-10-14 15:37:06 +00:00
self.information_spread_intensity = model.environment_params['information_spread_intensity']
self.terrorist_additional_influence = model.environment_params['terrorist_additional_influence']
self.prob_interaction = model.environment_params['prob_interaction']
2019-02-19 20:17:19 +00:00
if self['id'] == self.civilian.id: # Civilian
2022-10-06 13:49:10 +00:00
self.mean_belief = self.random.uniform(0.00, 0.5)
2019-02-19 20:17:19 +00:00
elif self['id'] == self.terrorist.id: # Terrorist
2022-10-06 13:49:10 +00:00
self.mean_belief = self.random.uniform(0.8, 1.00)
2019-02-19 20:17:19 +00:00
elif self['id'] == self.leader.id: # Leader
self.mean_belief = 1.00
else:
raise Exception('Invalid state id: {}'.format(self['id']))
2021-10-14 15:37:06 +00:00
if 'min_vulnerability' in model.environment_params:
2022-10-06 13:49:10 +00:00
self.vulnerability = self.random.uniform( model.environment_params['min_vulnerability'], model.environment_params['max_vulnerability'] )
2019-02-19 20:17:19 +00:00
else :
2022-10-06 13:49:10 +00:00
self.vulnerability = self.random.uniform( 0, model.environment_params['max_vulnerability'] )
2019-02-19 20:17:19 +00:00
@state
def civilian(self):
2022-10-06 13:49:10 +00:00
neighbours = list(self.get_neighboring_agents(agent_class=TerroristSpreadModel))
2019-02-19 20:17:19 +00:00
if len(neighbours) > 0:
# Only interact with some of the neighbors
2022-10-06 13:49:10 +00:00
interactions = list(n for n in neighbours if self.random.random() <= self.prob_interaction)
2019-02-19 20:17:19 +00:00
influence = sum( self.degree(i) for i in interactions )
mean_belief = sum( i.mean_belief * self.degree(i) / influence for i in interactions )
mean_belief = mean_belief * self.information_spread_intensity + self.mean_belief * ( 1 - self.information_spread_intensity )
self.mean_belief = mean_belief * self.vulnerability + self.mean_belief * ( 1 - self.vulnerability )
if self.mean_belief >= 0.8:
return self.terrorist
@state
def leader(self):
self.mean_belief = self.mean_belief ** ( 1 - self.terrorist_additional_influence )
for neighbour in self.get_neighboring_agents(state_id=[self.terrorist.id, self.leader.id]):
if self.betweenness(neighbour) > self.betweenness(self):
return self.terrorist
@state
def terrorist(self):
neighbours = self.get_agents(state_id=[self.terrorist.id, self.leader.id],
2022-10-06 13:49:10 +00:00
agent_class=TerroristSpreadModel,
2019-02-19 20:17:19 +00:00
limit_neighbors=True)
if len(neighbours) > 0:
influence = sum( self.degree(n) for n in neighbours )
mean_belief = sum( n.mean_belief * self.degree(n) / influence for n in neighbours )
mean_belief = mean_belief * self.vulnerability + self.mean_belief * ( 1 - self.vulnerability )
self.mean_belief = self.mean_belief ** ( 1 - self.terrorist_additional_influence )
# Check if there are any leaders in the group
leaders = list(filter(lambda x: x.state.id == self.leader.id, neighbours))
if not leaders:
# Check if this is the potential leader
# Stop once it's found. Otherwise, set self as leader
for neighbour in neighbours:
if self.betweenness(self) < self.betweenness(neighbour):
return
return self.leader
2022-10-13 20:43:16 +00:00
def ego_search(self, steps=1, center=False, node=None, **kwargs):
'''Get a list of nodes in the ego network of *node* of radius *steps*'''
node = as_node(node if node is not None else self)
G = self.subgraph(**kwargs)
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
def degree(self, node, force=False):
node = as_node(node)
if force or (not hasattr(self.model, '_degree')) or getattr(self.model, '_last_step', 0) < self.now:
self.model._degree = nx.degree_centrality(self.G)
self.model._last_step = self.now
return self.model._degree[node]
def betweenness(self, node, force=False):
node = as_node(node)
if force or (not hasattr(self.model, '_betweenness')) or getattr(self.model, '_last_step', 0) < self.now:
self.model._betweenness = nx.betweenness_centrality(self.G)
self.model._last_step = self.now
return self.model._betweenness[node]
2019-02-19 20:17:19 +00:00
class TrainingAreaModel(FSM, Geo):
"""
Settings:
training_influence
min_vulnerability
Requires TerroristSpreadModel.
"""
2021-10-14 15:37:06 +00:00
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.training_influence = model.environment_params['training_influence']
if 'min_vulnerability' in model.environment_params:
self.min_vulnerability = model.environment_params['min_vulnerability']
2019-02-19 20:17:19 +00:00
else: self.min_vulnerability = 0
@default_state
@state
def terrorist(self):
2022-10-06 13:49:10 +00:00
for neighbour in self.get_neighboring_agents(agent_class=TerroristSpreadModel):
2019-02-19 20:17:19 +00:00
if neighbour.vulnerability > self.min_vulnerability:
neighbour.vulnerability = neighbour.vulnerability ** ( 1 - self.training_influence )
class HavenModel(FSM, Geo):
"""
Settings:
haven_influence
min_vulnerability
max_vulnerability
Requires TerroristSpreadModel.
"""
2021-10-14 15:37:06 +00:00
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.haven_influence = model.environment_params['haven_influence']
if 'min_vulnerability' in model.environment_params:
self.min_vulnerability = model.environment_params['min_vulnerability']
2019-02-19 20:17:19 +00:00
else: self.min_vulnerability = 0
2021-10-14 15:37:06 +00:00
self.max_vulnerability = model.environment_params['max_vulnerability']
2019-02-19 20:17:19 +00:00
def get_occupants(self, **kwargs):
2022-10-06 13:49:10 +00:00
return self.get_neighboring_agents(agent_class=TerroristSpreadModel, **kwargs)
2019-02-19 20:17:19 +00:00
@state
def civilian(self):
civilians = self.get_occupants(state_id=self.civilian.id)
if not civilians:
return self.terrorist
for neighbour in self.get_occupants():
if neighbour.vulnerability > self.min_vulnerability:
neighbour.vulnerability = neighbour.vulnerability * ( 1 - self.haven_influence )
return self.civilian
@state
def terrorist(self):
for neighbour in self.get_occupants():
if neighbour.vulnerability < self.max_vulnerability:
neighbour.vulnerability = neighbour.vulnerability ** ( 1 - self.haven_influence )
return self.terrorist
class TerroristNetworkModel(TerroristSpreadModel):
"""
Settings:
sphere_influence
vision_range
weight_social_distance
weight_link_distance
"""
2021-10-14 15:37:06 +00:00
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
2019-02-19 20:17:19 +00:00
2021-10-14 15:37:06 +00:00
self.vision_range = model.environment_params['vision_range']
self.sphere_influence = model.environment_params['sphere_influence']
self.weight_social_distance = model.environment_params['weight_social_distance']
self.weight_link_distance = model.environment_params['weight_link_distance']
2019-02-19 20:17:19 +00:00
@state
def terrorist(self):
self.update_relationships()
return super().terrorist()
@state
def leader(self):
self.update_relationships()
return super().leader()
def update_relationships(self):
if self.count_neighboring_agents(state_id=self.civilian.id) == 0:
2022-10-06 13:49:10 +00:00
close_ups = set(self.geo_search(radius=self.vision_range, agent_class=TerroristNetworkModel))
step_neighbours = set(self.ego_search(self.sphere_influence, agent_class=TerroristNetworkModel, center=False))
neighbours = set(agent.id for agent in self.get_neighboring_agents(agent_class=TerroristNetworkModel))
2019-02-19 20:17:19 +00:00
search = (close_ups | step_neighbours) - neighbours
for agent in self.get_agents(search):
social_distance = 1 / self.shortest_path_length(agent.id)
spatial_proximity = ( 1 - self.get_distance(agent.id) )
prob_new_interaction = self.weight_social_distance * social_distance + self.weight_link_distance * spatial_proximity
2022-10-06 13:49:10 +00:00
if agent['id'] == agent.civilian.id and self.random.random() < prob_new_interaction:
2019-02-19 20:17:19 +00:00
self.add_edge(agent)
break
def get_distance(self, target):
2022-10-13 20:43:16 +00:00
source_x, source_y = nx.get_node_attributes(self.G, 'pos')[self.id]
target_x, target_y = nx.get_node_attributes(self.G, 'pos')[target]
2019-02-19 20:17:19 +00:00
dx = abs( source_x - target_x )
dy = abs( source_y - target_y )
return ( dx ** 2 + dy ** 2 ) ** ( 1 / 2 )
def shortest_path_length(self, target):
try:
2022-10-13 20:43:16 +00:00
return nx.shortest_path_length(self.G, self.id, target)
2019-02-19 20:17:19 +00:00
except nx.NetworkXNoPath:
return float('inf')