1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-22 11:12:29 +00:00
soil/examples/mesa/social_wealth.py

138 lines
3.7 KiB
Python
Raw Normal View History

2022-10-17 18:23:57 +00:00
"""
2021-10-14 15:37:06 +00:00
This is an example that adds soil agents and environment in a normal
mesa workflow.
2022-10-17 18:23:57 +00:00
"""
2021-10-14 15:37:06 +00:00
from mesa import Agent as MesaAgent
from mesa.space import MultiGrid
2022-10-17 18:23:57 +00:00
2021-10-14 15:37:06 +00:00
# from mesa.time import RandomActivation
from mesa.datacollection import DataCollector
from mesa.batchrunner import BatchRunner
import networkx as nx
from soil import NetworkAgent, Environment, serialization
2021-10-14 15:37:06 +00:00
2022-10-17 18:23:57 +00:00
2021-10-14 15:37:06 +00:00
def compute_gini(model):
agent_wealths = [agent.wealth for agent in model.agents]
x = sorted(agent_wealths)
N = len(list(model.agents))
2022-10-17 18:23:57 +00:00
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
return 1 + (1 / N) - 2 * B
2021-10-14 15:37:06 +00:00
2021-10-14 15:37:06 +00:00
class MoneyAgent(MesaAgent):
"""
A MESA agent with fixed initial wealth.
It will only share wealth with neighbors based on grid proximity
"""
def __init__(self, unique_id, model, wealth=1):
2021-10-14 15:37:06 +00:00
super().__init__(unique_id=unique_id, model=model)
self.wealth = wealth
2021-10-14 15:37:06 +00:00
def move(self):
possible_steps = self.model.grid.get_neighborhood(
2022-10-17 18:23:57 +00:00
self.pos, moore=True, include_center=False
)
2021-10-14 15:37:06 +00:00
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)
def give_money(self):
cellmates = self.model.grid.get_cell_list_contents([self.pos])
if len(cellmates) > 1:
other = self.random.choice(cellmates)
other.wealth += 1
self.wealth -= 1
def step(self):
print("Crying wolf", self.pos)
2021-10-14 15:37:06 +00:00
self.move()
if self.wealth > 0:
self.give_money()
class SocialMoneyAgent(NetworkAgent, MoneyAgent):
wealth = 1
def give_money(self):
cellmates = set(self.model.grid.get_cell_list_contents([self.pos]))
friends = set(self.get_neighbors())
2021-10-14 15:37:06 +00:00
self.info("Trying to give money")
self.info("Cellmates: ", cellmates)
self.info("Friends: ", friends)
2021-10-14 15:37:06 +00:00
nearby_friends = list(cellmates & friends)
if len(nearby_friends):
other = self.random.choice(nearby_friends)
other.wealth += 1
self.wealth -= 1
2022-10-17 18:23:57 +00:00
def graph_generator(n=5):
G = nx.Graph()
for ix in range(n):
G.add_edge(0, ix)
return G
2021-10-14 15:37:06 +00:00
class MoneyEnv(Environment):
"""A model with some number of agents."""
2022-10-17 18:23:57 +00:00
def __init__(
self,
width,
height,
N,
generator=graph_generator,
agent_class=SocialMoneyAgent,
topology=None,
**kwargs
):
generator = serialization.deserialize(generator)
agent_class = serialization.deserialize(agent_class, globs=globals())
topology = generator(n=N)
2022-10-17 18:23:57 +00:00
super().__init__(topology=topology, N=N, **kwargs)
2021-10-14 15:37:06 +00:00
self.grid = MultiGrid(width, height, False)
self.populate_network(agent_class=agent_class)
2021-10-14 15:37:06 +00:00
# Create agents
for agent in self.agents:
x = self.random.randrange(self.grid.width)
y = self.random.randrange(self.grid.height)
self.grid.place_agent(agent, (x, y))
self.datacollector = DataCollector(
2022-10-17 18:23:57 +00:00
model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}
)
2021-10-14 15:37:06 +00:00
2022-10-17 18:23:57 +00:00
if __name__ == "__main__":
2021-10-14 15:37:06 +00:00
2022-10-17 18:23:57 +00:00
fixed_params = {
"generator": nx.complete_graph,
"width": 10,
"network_agents": [{"agent_class": SocialMoneyAgent, "weight": 1}],
"height": 10,
}
2021-10-14 15:37:06 +00:00
variable_params = {"N": range(10, 100, 10)}
2022-10-17 18:23:57 +00:00
batch_run = BatchRunner(
MoneyEnv,
variable_parameters=variable_params,
fixed_parameters=fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini},
)
2021-10-14 15:37:06 +00:00
batch_run.run_all()
run_data = batch_run.get_model_vars_dataframe()
run_data.head()
print(run_data.Gini)