1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-14 15:32:29 +00:00
soil/examples/terrorism/TerroristNetworkModel.py

292 lines
10 KiB
Python
Raw Normal View History

2019-02-19 20:17:19 +00:00
import networkx as nx
from soil.agents import Geo, NetworkAgent, FSM, state, default_state
from soil import Environment
class TerroristSpreadModel(FSM, Geo):
"""
Settings:
information_spread_intensity
terrorist_additional_influence
min_vulnerability (optional else zero)
max_vulnerability
prob_interaction
"""
2021-10-14 15:37:06 +00:00
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
2019-02-19 20:17:19 +00:00
2022-10-17 18:23:57 +00:00
self.information_spread_intensity = model.environment_params[
"information_spread_intensity"
]
self.terrorist_additional_influence = model.environment_params[
"terrorist_additional_influence"
]
self.prob_interaction = model.environment_params["prob_interaction"]
if self["id"] == self.civilian.id: # Civilian
2022-10-06 13:49:10 +00:00
self.mean_belief = self.random.uniform(0.00, 0.5)
2022-10-17 18:23:57 +00:00
elif self["id"] == self.terrorist.id: # Terrorist
2022-10-06 13:49:10 +00:00
self.mean_belief = self.random.uniform(0.8, 1.00)
2022-10-17 18:23:57 +00:00
elif self["id"] == self.leader.id: # Leader
2019-02-19 20:17:19 +00:00
self.mean_belief = 1.00
else:
2022-10-17 18:23:57 +00:00
raise Exception("Invalid state id: {}".format(self["id"]))
2019-02-19 20:17:19 +00:00
2022-10-17 18:23:57 +00:00
if "min_vulnerability" in model.environment_params:
self.vulnerability = self.random.uniform(
model.environment_params["min_vulnerability"],
model.environment_params["max_vulnerability"],
)
else:
self.vulnerability = self.random.uniform(
0, model.environment_params["max_vulnerability"]
)
2019-02-19 20:17:19 +00:00
@state
def civilian(self):
neighbours = list(self.get_neighbors(agent_class=TerroristSpreadModel))
2019-02-19 20:17:19 +00:00
if len(neighbours) > 0:
# Only interact with some of the neighbors
2022-10-17 18:23:57 +00:00
interactions = list(
n for n in neighbours if self.random.random() <= self.prob_interaction
)
influence = sum(self.degree(i) for i in interactions)
mean_belief = sum(
i.mean_belief * self.degree(i) / influence for i in interactions
)
mean_belief = (
mean_belief * self.information_spread_intensity
+ self.mean_belief * (1 - self.information_spread_intensity)
)
self.mean_belief = mean_belief * self.vulnerability + self.mean_belief * (
1 - self.vulnerability
)
2019-02-19 20:17:19 +00:00
if self.mean_belief >= 0.8:
return self.terrorist
@state
def leader(self):
2022-10-17 18:23:57 +00:00
self.mean_belief = self.mean_belief ** (1 - self.terrorist_additional_influence)
for neighbour in self.get_neighbors(
2022-10-17 18:23:57 +00:00
state_id=[self.terrorist.id, self.leader.id]
):
2019-02-19 20:17:19 +00:00
if self.betweenness(neighbour) > self.betweenness(self):
return self.terrorist
@state
def terrorist(self):
2022-10-17 18:23:57 +00:00
neighbours = self.get_agents(
state_id=[self.terrorist.id, self.leader.id],
agent_class=TerroristSpreadModel,
limit_neighbors=True,
)
2019-02-19 20:17:19 +00:00
if len(neighbours) > 0:
2022-10-17 18:23:57 +00:00
influence = sum(self.degree(n) for n in neighbours)
mean_belief = sum(
n.mean_belief * self.degree(n) / influence for n in neighbours
)
mean_belief = mean_belief * self.vulnerability + self.mean_belief * (
1 - self.vulnerability
)
self.mean_belief = self.mean_belief ** (
1 - self.terrorist_additional_influence
)
2019-02-19 20:17:19 +00:00
# Check if there are any leaders in the group
leaders = list(filter(lambda x: x.state.id == self.leader.id, neighbours))
if not leaders:
# Check if this is the potential leader
# Stop once it's found. Otherwise, set self as leader
for neighbour in neighbours:
if self.betweenness(self) < self.betweenness(neighbour):
return
return self.leader
2022-10-13 20:43:16 +00:00
def ego_search(self, steps=1, center=False, node=None, **kwargs):
2022-10-17 18:23:57 +00:00
"""Get a list of nodes in the ego network of *node* of radius *steps*"""
2022-10-13 20:43:16 +00:00
node = as_node(node if node is not None else self)
G = self.subgraph(**kwargs)
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
def degree(self, node, force=False):
node = as_node(node)
2022-10-17 18:23:57 +00:00
if (
force
or (not hasattr(self.model, "_degree"))
or getattr(self.model, "_last_step", 0) < self.now
):
2022-10-13 20:43:16 +00:00
self.model._degree = nx.degree_centrality(self.G)
self.model._last_step = self.now
return self.model._degree[node]
def betweenness(self, node, force=False):
node = as_node(node)
2022-10-17 18:23:57 +00:00
if (
force
or (not hasattr(self.model, "_betweenness"))
or getattr(self.model, "_last_step", 0) < self.now
):
2022-10-13 20:43:16 +00:00
self.model._betweenness = nx.betweenness_centrality(self.G)
self.model._last_step = self.now
return self.model._betweenness[node]
2019-02-19 20:17:19 +00:00
class TrainingAreaModel(FSM, Geo):
"""
Settings:
training_influence
min_vulnerability
Requires TerroristSpreadModel.
"""
2021-10-14 15:37:06 +00:00
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
2022-10-17 18:23:57 +00:00
self.training_influence = model.environment_params["training_influence"]
if "min_vulnerability" in model.environment_params:
self.min_vulnerability = model.environment_params["min_vulnerability"]
else:
self.min_vulnerability = 0
2019-02-19 20:17:19 +00:00
@default_state
@state
def terrorist(self):
for neighbour in self.get_neighbors(agent_class=TerroristSpreadModel):
2019-02-19 20:17:19 +00:00
if neighbour.vulnerability > self.min_vulnerability:
2022-10-17 18:23:57 +00:00
neighbour.vulnerability = neighbour.vulnerability ** (
1 - self.training_influence
)
2019-02-19 20:17:19 +00:00
class HavenModel(FSM, Geo):
"""
Settings:
haven_influence
min_vulnerability
max_vulnerability
Requires TerroristSpreadModel.
"""
2021-10-14 15:37:06 +00:00
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
2022-10-17 18:23:57 +00:00
self.haven_influence = model.environment_params["haven_influence"]
if "min_vulnerability" in model.environment_params:
self.min_vulnerability = model.environment_params["min_vulnerability"]
else:
self.min_vulnerability = 0
self.max_vulnerability = model.environment_params["max_vulnerability"]
2019-02-19 20:17:19 +00:00
def get_occupants(self, **kwargs):
return self.get_neighbors(agent_class=TerroristSpreadModel, **kwargs)
2019-02-19 20:17:19 +00:00
@state
def civilian(self):
civilians = self.get_occupants(state_id=self.civilian.id)
if not civilians:
return self.terrorist
for neighbour in self.get_occupants():
if neighbour.vulnerability > self.min_vulnerability:
2022-10-17 18:23:57 +00:00
neighbour.vulnerability = neighbour.vulnerability * (
1 - self.haven_influence
)
2019-02-19 20:17:19 +00:00
return self.civilian
@state
def terrorist(self):
for neighbour in self.get_occupants():
if neighbour.vulnerability < self.max_vulnerability:
2022-10-17 18:23:57 +00:00
neighbour.vulnerability = neighbour.vulnerability ** (
1 - self.haven_influence
)
2019-02-19 20:17:19 +00:00
return self.terrorist
class TerroristNetworkModel(TerroristSpreadModel):
"""
Settings:
sphere_influence
vision_range
weight_social_distance
weight_link_distance
"""
2021-10-14 15:37:06 +00:00
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
2019-02-19 20:17:19 +00:00
2022-10-17 18:23:57 +00:00
self.vision_range = model.environment_params["vision_range"]
self.sphere_influence = model.environment_params["sphere_influence"]
self.weight_social_distance = model.environment_params["weight_social_distance"]
self.weight_link_distance = model.environment_params["weight_link_distance"]
2019-02-19 20:17:19 +00:00
@state
def terrorist(self):
self.update_relationships()
return super().terrorist()
@state
def leader(self):
self.update_relationships()
return super().leader()
def update_relationships(self):
if self.count_neighbors(state_id=self.civilian.id) == 0:
2022-10-17 18:23:57 +00:00
close_ups = set(
self.geo_search(
radius=self.vision_range, agent_class=TerroristNetworkModel
)
)
step_neighbours = set(
self.ego_search(
self.sphere_influence,
agent_class=TerroristNetworkModel,
center=False,
)
)
neighbours = set(
agent.id
for agent in self.get_neighbors(
2022-10-17 18:23:57 +00:00
agent_class=TerroristNetworkModel
)
)
2019-02-19 20:17:19 +00:00
search = (close_ups | step_neighbours) - neighbours
for agent in self.get_agents(search):
social_distance = 1 / self.shortest_path_length(agent.id)
2022-10-17 18:23:57 +00:00
spatial_proximity = 1 - self.get_distance(agent.id)
prob_new_interaction = (
self.weight_social_distance * social_distance
+ self.weight_link_distance * spatial_proximity
)
if (
agent["id"] == agent.civilian.id
and self.random.random() < prob_new_interaction
):
2019-02-19 20:17:19 +00:00
self.add_edge(agent)
break
def get_distance(self, target):
2022-10-17 18:23:57 +00:00
source_x, source_y = nx.get_node_attributes(self.G, "pos")[self.id]
target_x, target_y = nx.get_node_attributes(self.G, "pos")[target]
dx = abs(source_x - target_x)
dy = abs(source_y - target_y)
return (dx**2 + dy**2) ** (1 / 2)
2019-02-19 20:17:19 +00:00
def shortest_path_length(self, target):
try:
2022-10-13 20:43:16 +00:00
return nx.shortest_path_length(self.G, self.id, target)
2019-02-19 20:17:19 +00:00
except nx.NetworkXNoPath:
2022-10-17 18:23:57 +00:00
return float("inf")