mirror of
https://github.com/gsi-upm/soil
synced 2024-11-14 07:22:29 +00:00
105 lines
2.6 KiB
Python
105 lines
2.6 KiB
Python
|
# settings.py
|
||
|
def init():
|
||
|
global number_of_nodes
|
||
|
global max_time
|
||
|
global num_trials
|
||
|
global bite_prob
|
||
|
global timeout
|
||
|
global network_type
|
||
|
global heal_prob
|
||
|
global innovation_prob
|
||
|
global imitation_prob
|
||
|
global outside_effects_prob
|
||
|
global anger_prob
|
||
|
global joy_prob
|
||
|
global sadness_prob
|
||
|
global disgust_prob
|
||
|
global tweet_probability_users
|
||
|
global tweet_relevant_probability
|
||
|
global tweet_probability_about
|
||
|
global sentiment_about
|
||
|
global tweet_probability_enterprises
|
||
|
global enterprises
|
||
|
global neutral_discontent_spon_prob
|
||
|
global neutral_discontent_infected_prob
|
||
|
global neutral_content_spon_prob
|
||
|
global neutral_content_infected_prob
|
||
|
global discontent_content
|
||
|
global discontent_neutral
|
||
|
global content_discontent
|
||
|
global content_neutral
|
||
|
global variance_d_c
|
||
|
global variance_c_d
|
||
|
global standard_variance
|
||
|
global prob_neutral_making_denier
|
||
|
global prob_infect
|
||
|
global prob_cured_healing_infected
|
||
|
global prob_cured_vaccinate_neutral
|
||
|
global prob_vaccinated_healing_infected
|
||
|
global prob_vaccinated_vaccinate_neutral
|
||
|
global prob_generate_anti_rumor
|
||
|
|
||
|
# Network settings
|
||
|
network_type = 1
|
||
|
number_of_nodes = 1000
|
||
|
max_time = 50
|
||
|
num_trials = 1
|
||
|
timeout = 2
|
||
|
|
||
|
# Zombie model
|
||
|
bite_prob = 0.01 # 0-1
|
||
|
heal_prob = 0.01 # 0-1
|
||
|
|
||
|
# Bass model
|
||
|
innovation_prob = 0.001
|
||
|
imitation_prob = 0.005
|
||
|
|
||
|
# Sentiment Correlation model
|
||
|
outside_effects_prob = 0.2
|
||
|
anger_prob = 0.06
|
||
|
joy_prob = 0.05
|
||
|
sadness_prob = 0.02
|
||
|
disgust_prob = 0.02
|
||
|
|
||
|
# Big Market model
|
||
|
## Names
|
||
|
enterprises = ["BBVA", "Santander", "Bankia"]
|
||
|
## Users
|
||
|
tweet_probability_users = 0.44
|
||
|
tweet_relevant_probability = 0.25
|
||
|
tweet_probability_about = [0.15, 0.15, 0.15]
|
||
|
sentiment_about = [0, 0, 0] # Default values
|
||
|
## Enterprises
|
||
|
tweet_probability_enterprises = [0.3, 0.3, 0.3]
|
||
|
|
||
|
# SISa
|
||
|
neutral_discontent_spon_prob = 0.04
|
||
|
neutral_discontent_infected_prob = 0.04
|
||
|
neutral_content_spon_prob = 0.18
|
||
|
neutral_content_infected_prob = 0.02
|
||
|
|
||
|
discontent_neutral = 0.13
|
||
|
discontent_content = 0.07
|
||
|
variance_d_c = 0.02
|
||
|
|
||
|
content_discontent = 0.009
|
||
|
variance_c_d = 0.003
|
||
|
content_neutral = 0.088
|
||
|
|
||
|
standard_variance = 0.055
|
||
|
|
||
|
# Spread Model M2 and Control Model M2
|
||
|
prob_neutral_making_denier = 0.035
|
||
|
|
||
|
prob_infect = 0.075
|
||
|
|
||
|
prob_cured_healing_infected = 0.035
|
||
|
prob_cured_vaccinate_neutral = 0.035
|
||
|
|
||
|
prob_vaccinated_healing_infected = 0.035
|
||
|
prob_vaccinated_vaccinate_neutral = 0.035
|
||
|
prob_generate_anti_rumor = 0.035
|
||
|
|
||
|
|
||
|
|