mirror of
https://github.com/balkian/slides-intro-spark.git
synced 2024-11-24 05:02:30 +00:00
74 lines
2.0 KiB
Scala
74 lines
2.0 KiB
Scala
import java.io._
|
|
import scala.io.Source
|
|
import scala.util.Random
|
|
|
|
object Functions {
|
|
def helloworld1: Unit = {
|
|
println("Hello, functions world!")
|
|
}
|
|
|
|
def splitLine(line: String) = line.split(" ")
|
|
|
|
def countOccurrences(target: String)(line: String) = {
|
|
splitLine(line).map(_ == target).foldLeft(0)((acc, n) => if (n) acc+1 else acc)
|
|
}
|
|
|
|
def time[R](block: => R): R = {
|
|
time("{}")(block)
|
|
}
|
|
|
|
def time[R](name: String)(block: => R): R = {
|
|
val formatter = java.text.NumberFormat.getIntegerInstance
|
|
val t0 = System.nanoTime()
|
|
val result = block // call-by-name
|
|
val t1 = System.nanoTime()
|
|
println("Elapsed time for " + name +": " + formatter.format((t1 - t0)) + "ns. Result: "+result)
|
|
result
|
|
}
|
|
|
|
def makeFile(size: Integer, name: String): File = {
|
|
|
|
val file = new File(name)
|
|
if (file.exists && file.length >= size) return file
|
|
val bw = new BufferedWriter(new FileWriter(file))
|
|
|
|
for (
|
|
i <- Stream.continually(Random.nextInt(100)).takeWhile(x => file.length < size)
|
|
) {
|
|
val r = scala.util.Random
|
|
bw.write(i.toString())
|
|
bw.write("\n")
|
|
}
|
|
bw.close()
|
|
return file
|
|
}
|
|
|
|
def makeBigFile() = {
|
|
val size = 1024*1024*100
|
|
makeFile(size, "BigFile.txt")
|
|
}
|
|
|
|
def makeSmallFile() = {
|
|
val size = 1024*1024
|
|
makeFile(size, "SmallFile.txt")
|
|
}
|
|
|
|
def applyToFile[R](file: File)(block: String=>R)(parallel: Boolean): Iterator[R] = {
|
|
if (parallel) {
|
|
Source.fromFile(file).getLines().grouped(1000).flatMap({ y=>
|
|
val z = if (parallel) y.toIndexedSeq.par else y;
|
|
z.map(x=>block(x))})
|
|
} else {
|
|
Source.fromFile(file).getLines().map(x=>block(x))
|
|
}
|
|
}
|
|
|
|
def mapRedFile[R](file: File)(mapper: String=>R)(reducer: (R,R)=>R)(parallel: Boolean): R = {
|
|
if (parallel)
|
|
(applyToFile(file)(mapper)(parallel)).grouped(1000).map(x=>x.toIndexedSeq.par.reduce(reducer)).reduce(reducer)
|
|
else
|
|
(applyToFile(file)(mapper)(parallel)).reduce(reducer)
|
|
}
|
|
|
|
}
|