\documentclass{beamer} \usepackage[utf8]{inputenc} \usepackage{media9} \usepackage{lipsum} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usetheme{metropolis} \usepackage{tcolorbox} \usepackage{listings} \usepackage{lstlinebgcolor} \usepackage{MnSymbol} \usepackage{wasysym} \usepackage{animate} \lstset{% basicstyle=\ttfamily\large, columns=fullflexible, escapeinside={(*@}{@*)}, numbers=none, breaklines=true, numbersep=5pt, % how far the line-numbers are from the code numberstyle=\tiny\color{gray}, % the style that is used for the line-numbers numbersep=5pt, % how far the line-numbers are from the code % postbreak={\hbox{\raisebox{0ex}[0ex][0ex]\color{red}{\hookrightarrow}\space}} postbreak=\raisebox{0ex}[0ex][0ex]{\ensuremath{\rcurvearrowse\space}}, keywordstyle=\color{blue}, % keyword style stringstyle=\color{red}, % string literal style language=Scala, % belowskip=0pt, % aboveskip=0pt, } \definecolor{lightyellow}{RGB}{255,255,204} \title{Spark} \subtitle{Cluster computing} \author{J. Fernando Sánchez, Joaquín Salvachúa, Gabriel Huecas } \institute{Universidad Politécnica de Madrid} \date{2016} \newcommand{\btVFill}{\vskip0pt plus 1filll} \begin{document} \begin{frame} \titlepage{} \end{frame} \begin{frame}[allowframebreaks] \frametitle{Outline} \tableofcontents \end{frame} \section{Background} \begin{frame} \frametitle{LISP and functional programming} \begin{columns} \column{0.5\textwidth} \begin{itemize} \item Higher level programming \item Avoid side effects \item Pattern matching \end{itemize} \column{0.5\textwidth} \includegraphics[width=\textwidth]{images/lisplogo.png} \end{columns} \end{frame} \begin{frame} \frametitle{Scala} \begin{columns} \column{0.5\textwidth} \includegraphics[width=\textwidth]{images/scalalogo.png} \column{0.5\textwidth} \begin{itemize} \item A \textit{better} Java \item Functional programming (optional) \item Actors for (coarse) concurrency \end{itemize} \end{columns} \end{frame} \begin{frame} \frametitle{Docker} \begin{columns} \column{0.5\textwidth} \begin{itemize} \item Easy and repeatable deployment \item Lots of pre-built images @ hub.docker.com \item Building block for other tools (swarm, compose, machine...) \end{itemize} \column{0.5\textwidth} \includegraphics[width=\textwidth]{images/docker_logo.png} \end{columns} \end{frame} { \pagecolor{black} \usebackgroundtemplate{\vbox to \paperheight{\vfil\hbox to \paperwidth{\hfil\includegraphics[height=\paperheight]{images/knowscala.jpg}\hfil}\vfil}}% \begin{frame}[plain] \end{frame} } { \pagecolor{black} \usebackgroundtemplate{\vbox to \paperheight{\vfil\hbox to \paperwidth{\hfil\includegraphics[height=\paperheight]{images/knowbigdata.jpg}\hfil}\vfil}}% \begin{frame}[plain] \end{frame} } % \begin{frame}[plain] % \center % \huge{Show me} % \end{frame} { \pagecolor{white} \usebackgroundtemplate{\vbox to \paperheight{\vfil\hbox to \paperwidth{\hfil\includegraphics[width=\paperwidth]{images/showme.png}\hfil}\vfil}}% \begin{frame}[plain] \end{frame} } \begin{frame}[fragile] \frametitle{Word count in Wikipedia} Problem: find the frequency each word is used in Wikipedia. We have the text of all wikipedia in a text file\footnote{By happy coincidence, the first two lines are ``hi world'' and ``hi''}. It begins like this: \begin{lstlisting}[backgroundcolor=\color{lightyellow},language={},postbreak={}, breakautoindent=false, breakindent=0pt, breaklines] hi world hi Scala (SKAH-lah)[9] is a general-purpose programming language. Scala has full support for functional programming and a strong static type system. Designed to be concise,[10] many of Scala's design decisions were inspired by criticism of Java's shortcomings.[8] \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Algorithm} \begin{itemize} \item Read every line \item Chunk every line into words \item Count every occurrence \item For every word, sum its occurrences \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{Possible results of every step} \begin{lstlisting}[language={},numbers=none,linebackgroundcolor={ \btLstHL<1>{1}% \btLstHL<2>{2}% \btLstHL<3>{3,4}% \btLstHL<4>{5}% }] (("hi world"), ("hi") ...) List((hi, 1), (hi, 1), (world, 1) ...) Map(hi ->(("hi", 1), (hi, 1)), world -> ((world, 1)) ...) Map(hi-> 2, world -> 1 ...) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Running the scala shell} We will use docker. \begin{lstlisting}[language=bash,numbers=none] docker run -it -v $PWD:Wikipedia.txt:Wiki \ --rm williamyeh/scala \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Scala code} %[linebackgroundcolor={ % \btLstHL<1>{1} % % \btLstHL<2>{3} % % \btLstHL<3>{5} % % \btLstHL<4>{7} % % \btLstHL<5>{9} % % }] \begin{lstlisting}[language=Scala,linebackgroundcolor={ \btLstHL<1>{2}% \btLstHL<2>{3}% \btLstHL<3>{4}% \btLstHL<4>{5}% \btLstHL<5>{6,7}% }] import scala.io.Source val wiki = Source.fromFile("Wiki").getLines wiki.flatMap(line=> line.split(" ")) map(x=>(x, 1)).toList groupBy(x => x._1) map({case (k, v) => (k, v.foldLeft(0)((a, b) => a+b._2))) \end{lstlisting} \end{frame} \begin{frame} \center {\huge Let's run it in the shell.} \end{frame} { \pagecolor{black} \usebackgroundtemplate{\vbox to \paperheight{\vfil\hbox to \paperwidth{\hfil\includegraphics[height=\paperheight]{images/justwaithere.jpg}\hfil}\vfil}}% \begin{frame}[plain] \end{frame} } \begin{frame} \frametitle{Wikipedia is big} \includegraphics[width=\textwidth]{images/outofmemory.jpg} \end{frame} \begin{frame} \center {\huge What happened?} \end{frame} \begin{frame} \frametitle{Limited resources} \begin{itemize} \item CPU limits our speed \begin{itemize} \item Multi-cores help... \item ...but real parallelism is \textbf{hard} \end{itemize} \item RAM limits how much data you can process at the same time \begin{itemize} \item What if you need more than 128GB? \item You could use more than one computer... \item ... but cluster computing is even harder than ``local'' parallelism \end{itemize} \item Functional programming helps a bit \end{itemize} \end{frame} \begin{frame}[plain] \center \huge But... this was supposed to be fun, wasn't it? \end{frame} \section{Introduction to Spark} \subsection{What is Spark?} { \pagecolor{white} \usebackgroundtemplate{\vbox to \paperheight{\vfil\hbox to \paperwidth{\hfil\includegraphics[width=\paperwidth]{images/sparkweb.png}\hfil}\vfil}}% \begin{frame}[plain] \end{frame} } \begin{frame} \frametitle{Quick definition} {\center {\huge Apache Spark™ is a fast and general engine for large-scale data processing.\footnote{\url{http://spark.apache.org}}}} On top of that: \begin{itemize} \item Open source (Top-level Apache project) \item Plays well with other tools \end{itemize} \end{frame} \begin{frame} \frametitle{Architecture} \includegraphics[width=\textwidth]{images/cluster-overview.png} \end{frame} \begin{frame} \frametitle{Programs} \center \includegraphics[height=.8\textheight]{images/sparkapp.png} \end{frame} \begin{frame} \frametitle{Ecosystem} \includegraphics[width=\textwidth]{images/sparkecosystem.png} \end{frame} \subsection{vs MapReduce} { \pagecolor{white} \usebackgroundtemplate{\vbox to \paperheight{\vfil\hbox to \paperwidth{\hfil\includegraphics[width=\paperwidth]{images/hadoop-spark.png}\hfil}\vfil}}% \begin{frame}[plain] % \center % \begin{tikzpicture}[remember picture,overlay] % \node[at=(current page.center)] { % \includegraphics[height=\paperheight]{images/justwaithere.jpg} % }; % \end{tikzpicture} \end{frame} } \begin{frame} \frametitle{Comparison to MapReduce} \begin{itemize} \item In-memory data \begin{itemize} \item Less i/o overhead \item Faster operations \item Caching \end{itemize} \item Better for recursive tasks (e.g. machine learning) \item Some libraries are dropping MapReduce support \end{itemize} \end{frame} \begin{frame} \frametitle{Contributors to Spark/Hadoop 2014} \includegraphics[width=\textwidth]{images/hadoopsparkcontribs.png} \end{frame} \begin{frame} \frametitle{Project status} \center \includegraphics[width=\textwidth]{images/sparkgh.png} \includegraphics[height=.35\textheight]{images/contributors.png} \end{frame} \subsection{Key concepts} \begin{frame} \frametitle{Overview} % {\huge Two core concepts} % \vfill \begin{columns}[t] \column{0.5\textwidth} Data (RDDs/Datasets) \begin{itemize} \item RDD: Resilient Distributed Dataset \item Collections of objects spread across a cluster, stored in RAM or on Disk \item Built through parallel transformations \item Automatically rebuilt on failure \end{itemize} \column{0.5\textwidth} Operations \begin{itemize} \item Transformations (e.g. group, map, groupBy) \item Actions (e.g. count, collect, save) \end{itemize} \end{columns} \end{frame} \begin{frame} \frametitle{Transformations and actions} \includegraphics[width=\textwidth]{images/sparktransformations.png} \end{frame} \begin{frame} \frametitle{RDDs vs Datasets} Datasets are the future \begin{itemize} \item More memory efficient \item Libraries dropping support for RDDs \end{itemize} \end{frame} \begin{frame} \frametitle{RDDs vs Datasets} \includegraphics[width=\textwidth]{images/performance-wordcount-databricks.png} \includegraphics[width=\textwidth]{images/Memory-Usage-when-Caching-Chart-databricks.png} \end{frame} \begin{frame}[fragile] \frametitle{Language support} \begin{lstlisting}[title=Scala] val lines = sc.textFile(...) lines.filter(x => x.contains("ERROR")).count() \end{lstlisting} \begin{lstlisting}[title=Python,language=Python] lines = sc.textFile(...) lines.filter(lambda s: "ERROR" in s).count() \end{lstlisting} \begin{lstlisting}[title=Java,language=Java] Removed, to keep the slides clean :) \end{lstlisting} \center sc is the Spark Context (more or this later) \end{frame} \begin{frame} \frametitle{Different flavors} \begin{center} \begin{tabular}{ | l | c | c | c |} \hline Language & App & REPL & Performance \\ \hline Scala & Yes & Yes & \huge{\color{green}\smiley} \\ Java & Yes & No & \huge{\color{green}\smiley} \\ Python & Yes & Yes & \huge{\color{yellow}\smiley}\\ \hline \end{tabular} \end{center} The Read-eval-print-loop (REPL) is the easiest way to get started and explore datasets. It is just a special Spark application that accepts user input (scala code). \end{frame} \section{Working with RDDs} \begin{frame}[fragile] \frametitle{Creation} \begin{lstlisting}[title=From normal data structures,numbers=none] val nums = sc.parallelize(List(1, 2, 3)) val cont = sc.parallelize(List(("a", 1), ("a", 1), ("b", 3))) \end{lstlisting} \begin{lstlisting}[title=From distributed/local sources,numbers=none] sc.textFile('myfile') \end{lstlisting} \vfill \vfill Note: sc is the spark context in the Spark interpreter \end{frame} % ################################# % Starts Collect % ################################# \begin{frame}[fragile] \frametitle{Operations: collect} \only<1>{ \btVFill {\huge\ttfamily collect()} } \begin{onlyenv}<2-> \btVFill \begin{lstlisting}[numbers=none,basicstyle=\Large\ttfamily,title={Runs any pending transformation and returns the real values},linebackgroundcolor={\btLstHL{1,3}}] nums.collect() > List(1, 2, 3) cont.collect() > List((a, 1), (a, 1), (b, 3)) \end{lstlisting} \end{onlyenv} \btVFill Reminder: \begin{lstlisting}[numbers=none,linebackgroundcolor={\color{lightyellow}}] nums: List(1, 2, 3) cont: List(("a", 1), ("a", 1), ("b", 3)) \end{lstlisting} \end{frame} % ################################# % Ends Collect % ################################# % ################################# % Starts Take % ################################# \begin{frame}[fragile] \frametitle{Operations: take} \only<1>{ \btVFill {\huge\ttfamily take(N)} } \begin{onlyenv}<2> \btVFill \begin{lstlisting}[title=Returns the N first elements,basicstyle=\Large\ttfamily,linebackgroundcolor={\btLstHL<2>{1,3}}] nums.take(2) > List(1, 2) cont.take(1) > List((a, 1)) \end{lstlisting} \end{onlyenv} \btVFill Reminder: \begin{lstlisting}[numbers=none,linebackgroundcolor={\color{lightyellow}}] nums: List(1, 2, 3) cont: List(("a", 1), ("a", 1), ("b", 3)) \end{lstlisting} \end{frame} % ################################# % Ends Take % ################################# % ################################# % Starts Count % ################################# \begin{frame}[fragile] \frametitle{Operations: count} \only<1>{ \btVFill {\huge\ttfamily count()} } \begin{onlyenv}<2> \btVFill \begin{lstlisting}[title=Returns the number of elements in a collection,basicstyle=\Large\ttfamily,linebackgroundcolor={\btLstHL<2>{1,3}}] nums.count() > 3 cont.count() > 3 \end{lstlisting} \end{onlyenv} \btVFill Reminder: \begin{lstlisting}[numbers=none,linebackgroundcolor={\color{lightyellow}}] nums: List(1, 2, 3) cont: List(("a", 1), ("a", 1), ("b", 3)) \end{lstlisting} \end{frame} % ################################# % Ends Count % ################################# % ################################# % Starts filter % ################################# \begin{frame}[fragile] \frametitle{Operations: filter} \btVFill \only<1,2>{ {\huge\ttfamily filter(fn)} \btVFill } \begin{onlyenv}<2> This time, we need to define a function. Filter applies that function to every element, and returns those where the function returns true. For example: \end{onlyenv} \begin{onlyenv}<2,3> \begin{lstlisting}[basicstyle=\ttfamily\Large] val fn = (x:Int)) => x > 1 \end{lstlisting} \end{onlyenv} \begin{onlyenv}<3> \btVFill \begin{lstlisting}[title=Return a list containing the values where the function returns true,linebackgroundcolor={\btLstHL<3>{1}},basicstyle=\ttfamily\Large] nums.filter(fn) > List(2, 3) \end{lstlisting} \end{onlyenv} \btVFill Reminder: \begin{lstlisting}[numbers=none,linebackgroundcolor={\color{lightyellow}}] nums: List(1, 2, 3) cont: List(("a", 1), ("a", 1), ("b", 3)) \end{lstlisting} \end{frame} % ################################# % Ends filter % ################################# \begin{frame}[fragile] \frametitle{Quick aside: anonymous functions and underscores} % Defining a function when it is only going to be used once is tedious and makes reading code harder. \only<1,2>{ {\Large In scala, we can define ``anonymous functions'', also known as lambda functions.} } \pause \begin{lstlisting}[basicstyle=\ttfamily\Large] val fn = (x:Int)) => x > 1 cont.filter(fn) \end{lstlisting} \only<2>{ {\Large is equivalent to:} } \begin{lstlisting}[basicstyle=\ttfamily\Large] cont.filter((x:Int) => x>1) \end{lstlisting} \pause \only<3>{ {\Large Additionally, the scala compiler is smart enough to infer types in this example. Hence, we could simply write:} } \begin{lstlisting}[basicstyle=\ttfamily\Large] cont.filter(x => x>1) \end{lstlisting} \pause {\Large Furthermore, we could use underscores to replace arguments:} \begin{lstlisting}[basicstyle=\ttfamily\huge] cont.filter(_>1) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Quick aside: anonymous functions and underscores} {\large Every new argument in the lambda function represents a parameter Hence, these two expresions are equivalent } \begin{lstlisting}[basicstyle=\ttfamily\huge] _ + _ (x,y) => x+y \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Operations: filter} \Large Our last example could be written more concisely as: \vfill \begin{lstlisting}[linebackgroundcolor={\btLstHL<1>{1}},basicstyle=\ttfamily\Large] nums.filter(_>1) > List(2, 3) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Operations: filter} \Large What would this filter do? \vfill \begin{lstlisting}[basicstyle=\ttfamily\Large,linebackgroundcolor={\btLstHL<1>{1}}] nums.filter(_._1 == "a" && _._1 == 1) > ??? \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Operations: filter} \begin{lstlisting}[basicstyle=\ttfamily\normalsize,language={}] :9: error: missing parameter type for expanded function ((x$1, x$2) => x$1._1.$eq$eq(a).$amp$amp(x$2._1.$eq$eq(1))) Note: The expected type requires a one-argument function accepting a 2-Tuple. \end{lstlisting} \end{frame} { \pagecolor{black} \usebackgroundtemplate{\vbox to \paperheight{\vfil\hbox to \paperwidth{\hfil\includegraphics[height=\paperheight]{images/whatsparrow.jpg}\hfil}\vfil}}% \begin{frame}[plain] \end{frame} } \begin{frame}[fragile] \frametitle{Operations: filter} Remember, each new underscore represents a new argument. So that expression expands to: \begin{lstlisting}[language=TeX,basicstyle=\ttfamily\Large] nums.filter((x, y) => x._1 == "a" && y._2 == 1) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Operations: filter} The right expression is: \begin{lstlisting}[basicstyle=\ttfamily\Large,linebackgroundcolor={\btLstHL<1>{1,2}}] nums.filter(x => x._1 == "a" && x._2 == 1) > List((a, 1), (a, 1)) \end{lstlisting} \end{frame} % ################################# % Starts map % ################################# \begin{frame}[fragile] \frametitle{Operations: map} \btVFill \only<1>{ {\huge\ttfamily map(fn)} \btVFill } \begin{onlyenv}<2> \begin{lstlisting}[title=Apply a function to every item in the list,basicstyle=\Large\ttfamily,linebackgroundcolor={\btLstHL<2>{1,3}},basicstyle=\ttfamily\Large] cont.map(x._2) > List(1, 1, 3) nums.map(_*3) > List(3, 6, 9) \end{lstlisting} \end{onlyenv} Reminder: \begin{lstlisting}[numbers=none,linebackgroundcolor={\color{lightyellow}}] nums: List(1, 2, 3) cont: List(("a", 1), ("a", 1), ("b", 3)) \end{lstlisting} \end{frame} % ################################# % Ends map % ################################# % ################################# % Starts reduce % ################################# \begin{frame}[fragile] \frametitle{Operations: reduce} \btVFill \only<1>{ {\huge\ttfamily reduce(fn)} \btVFill } \begin{onlyenv}<2> \btVFill \begin{lstlisting}[title={Merge elements with an associative function (concisely)},basicstyle=\Large\ttfamily,linebackgroundcolor={\btLstHL<2>{1,3,4}}] nums.reduce(_+_) > 6 cont.reduce((x, y) => (x._1+y._1, x._2*y._2) > (aab, 3) \end{lstlisting} \end{onlyenv} \btVFill Reminder: \begin{lstlisting}[numbers=none,linebackgroundcolor={\color{lightyellow}}] nums: List(1, 2, 3) cont: List(("a", 1), ("a", 1), ("b", 3)) \end{lstlisting} \end{frame} % ################################# % Ends reduce % ################################# \begin{frame}[fragile] \frametitle{Operations} \begin{onlyenv}<1> \btVFill {\huge\ttfamily groupByKey()} \btVFill \end{onlyenv} \btVFill \begin{onlyenv}<2> \begin{lstlisting}[title={Group elements of a list by the first item in the tuple}, numbers=none,basicstyle=\Large\ttfamily,linebackgroundcolor={\btLstHL<2>{1}}] cont.groupByKey() > [(b, [3]), (a, [1,1])] \end{lstlisting} \end{onlyenv} \btVFill Reminder: \begin{lstlisting}[numbers=none,linebackgroundcolor={\color{lightyellow}}] nums: List(1, 2, 3) cont: List(("a", 1), ("a", 1), ("b", 3)) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Operations} \btVFill \begin{onlyenv}<1> \btVFill {\huge \ttfamily reduceByKey(fn)} \btVFill \btVFill \end{onlyenv} \begin{onlyenv}<2> \begin{lstlisting}[title={Group by key and reduce each value},basicstyle=\huge\ttfamily,basicstyle=\Large\ttfamily,linebackgroundcolor={\btLstHL<2>{1}}] cont.reduceByKey((x,y)=>x+y) > [(b,3), (a,2)] \end{lstlisting} reduceByKey is more efficient than applying group, map and reduce separately. The reduce function can be given to each worker, which avoids passing unnecessary data. \footnote{\href{https://databricks.gitbooks.io/databricks-spark-knowledge-base/content/best_practices/prefer_reducebykey_over_groupbykey.html}{Databricks' post on avoiding groupByKey }} \end{onlyenv} \btVFill Reminder: \begin{lstlisting}[numbers=none,linebackgroundcolor={\color{lightyellow}}] nums: List(1, 2, 3) cont: List(("a", 1), ("a", 1), ("b", 3)) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Operations} And once you are done, save your results to a file. \begin{lstlisting}[basicstyle=\Large\ttfamily] nums.saveAsTextFile("hdfs://file.txt") \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Example: Search in logs} \begin{lstlisting} val lines = sc.textFile("hdfs://...") val errors = lines.filter(s => s.startswith("ERROR")) val messages = errors.map(s => s.split("\t")._2) messages.cache() messages.filter(s => s.contains("mysq")).count() messages.filter(s => s.contains("php").count() \end{lstlisting} \end{frame} % \begin{frame} % \frametitle{Dependencies} % \includegraphics[width=\textwidth]{images/RDDdependencies.png} % \end{frame} % \begin{frame}[fragile] % \frametitle{Working with Key-value pairs} % \begin{lstlisting}{title=Key-value pairs in different languages} % pair = (a, b) % pair[0] # => a % pair[1] # => b % val pair = (a, b) % pair._1 // => a % pair._2 // => b % Tuple2 pair = new Tuple2(a, b); % pair._1 // => a % pair._2 // => b % \end{lstlisting} % \end{frame} \section{Using Spark} \begin{frame}[fragile] \frametitle{Local deployment using docker-compose} \center { \Large \only<1>{ Get the repo } \only<2>{ Move to the repo } \only<3>{ Run all the containers } \only<4>{ Launch spark-shell inside the master container } } \vfill \begin{lstlisting}[basicstyle=\ttfamily,linebackgroundcolor={ \btLstHL<1>{1}% \btLstHL<2>{2}% \btLstHL<3>{3}% \btLstHL<4>{4}% }] git clone http://github.com/gettyimages/docker-spark cd docker-spark docker-compose up docker exec -it dockerspark_master_1 bin/spark-shell \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Demo} \centering \href{https://asciinema.org/a/92977}{\includegraphics[width=\textwidth]{gif/sparkrepl-thumb.png}} \end{frame} \begin{frame}[fragile]{Compose.yml Master} \begin{lstlisting}[basicstyle=\ttfamily,language={},linebackgroundcolor={ \btLstHL<1>{2}% \btLstHL<2>{3}% \btLstHL<3>{11}% \btLstHL<4>{12}% }] master: image: gettyimages/spark command: bin/spark-class org.apache.spark.deploy.master.Master -h master hostname: master environment: MASTER: spark://master:7077 SPARK_CONF_DIR: /conf SPARK_PUBLIC_DNS: localhost ... bunch of ports ... volumes: - ./conf/master:/conf - ./data:/tmp/data \end{lstlisting} \end{frame} \begin{frame}[fragile]{Compose.yml Worker} \begin{lstlisting}[language={},basicstyle=\ttfamily,linebackgroundcolor={ \btLstHL<1>{2}% \btLstHL<2>{3}% \btLstHL<3>{12,13}% \btLstHL<4>{6-8}% }] worker: image: gettyimages/spark command: bin/spark-class org.apache.spark.deploy.worker.Worker spark://master:7077 hostname: worker environment: SPARK_CONF_DIR: /conf SPARK_WORKER_CORES: 2 SPARK_WORKER_MEMORY: 1g links: - master volumes: - ./conf/worker:/conf - ./data:/tmp/data \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Useful info} \begin{itemize} \item ./data folder is mounted as /tmp/data \begin{itemize} \item Copy your datasets there \item Load them in the shell: \texttt{sc.textFile("/tmp/data/...")} \end{itemize} \item Master Web UI (localhost:8080) \item Worker Web UI (localhost:8081) \item REPL Web UI (localhost:4040 when launched) \end{itemize} \textbf{A word of caution}: as any other app, the shell reserves resources on startup, whether you are using them or not. \end{frame} \begin{frame}[fragile] \frametitle{Applications} Steps: \begin{itemize} \item Write the code \item Compile the jar \item Make your data available to every node in the cluster \item Submit it to your cluster \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{Writing applications} \begin{lstlisting}[title=Example application,basicstyle=\ttfamily] import org.apache.spark.SparkContext import org.apache.spark.SparkContext._ import org.apache.spark.SparkConf object SparkWordCount { def main(args: Array[String]) { // create Spark context with Spark configuration val sc = new SparkContext(new SparkConf().setAppName("Spark Example")) ... Your program ... } \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Running an aplication} \begin{lstlisting}[language={},numbers=none] ./bin/spark-submit --class \ --master \ --deploy-mode \ --conf = \ ... # other options \ [application-arguments] \end{lstlisting} \end{frame} \section{Full examples} \begin{frame}[fragile] \frametitle{Word frequency in wikipedia, revisited} \begin{lstlisting}[title=Spark,basicstyle=\ttfamily,linebackgroundcolor={\color{orange!30}}] val wiki = sc.textFile("Wikipedia.txt") val counts = wiki.flatMap(line=> line.split(" ") map(word => (word, 1))) reduceByKey(_ + _) \end{lstlisting} \begin{lstlisting}[title=Pure scala,basicstyle=\ttfamily] val wiki = scala.io.Source.fromFile("Wiki").getLines wiki.flatMap(line=> line.split(" ")) map(x=>(x, 1)).toList groupBy(x => x._1) map({case (k, v) => (k, v.foldLeft(0)((a, b) => a+b._2))) \end{lstlisting} \end{frame} \begin{frame}[plain] \center \huge{Shall we try it in the shell?} \end{frame} { \pagecolor{black} \usebackgroundtemplate{\vbox to \paperheight{\vfil\hbox to \paperwidth{\hfil\includegraphics[height=\paperheight]{images/justwaithere.jpg}\hfil}\vfil}}% \begin{frame}[plain] \end{frame} } \begin{frame} \frametitle{Spark is not magic} \begin{itemize} \item We still have to add more resources \item Caching may cause the spark version to use \textbf{more memory} (this can be configured) \end{itemize} \center \pause \huge{However, it allows us to scale our application} \end{frame} % \begin{frame} % \frametitle{Word count} % \includegraphics[width=\textwidth]{images/wordcount.png} % \end{frame} \begin{frame}[fragile] \frametitle{Page rank} \begin{columns} \column{0.5\textwidth} \includegraphics[width=\textwidth]{images/pagerank.png} \column{0.5\textwidth} \begin{itemize} \item Created by Google \item Rank given by links and their importance \item Iterative (Perfect for Spark!) \end{itemize} \end{columns} \begin{centering} $ \text{PageRank of site} = \sum \frac{\text{Page rank of inbound link}}{\text{Number of links on that page}} $ OR $ PR(u) = (1-d)+d\times \sum \frac{PR(v)}{N(V)} $ \end{centering} \end{frame} { \pagecolor{white} \usebackgroundtemplate{\vbox to \paperheight{\vfil\hbox to \paperwidth{\hfil\includegraphics[height=\paperheight]{images/pageranktoy.jpg}\hfil}\vfil}}% \begin{frame}[plain] % \includegraphics[width=\textwidth]{images/pageranktoy.jpg} \footnote{\url{http://www.slideshare.net/sscdotopen/large-scale}} \end{frame} } \begin{frame} \frametitle{Page rank (code)} \includegraphics[width=\textwidth]{images/example.png} \end{frame} \section*{Next week on SIBD} \begin{frame}{Next week on SIBD} \begin{itemize} \item Advanced Spark configuration \item Multiple hosts \item Spark ecosystem \item More examples in IBM BlueMix \end{itemize} \end{frame} \section{Acknowledgements and useful links} \begin{frame} \begin{itemize} \item \href{http://spark.apache.org/docs/latest/programming-guide.html}{Spark programming guide} \item \href{https://databricks.com/blog/2016/01/04/introducing-apache-spark-datasets.html}{Databricks introducing apache spark datasets} \item \href{https://www.safaribooksonline.com/library/view/data-analytics-with/9781491913734/ch04.html}{Data Analytics with Hadoop: In-Memory Computing with Spark} \end{itemize} \end{frame} \end{document}