{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "![](./images/EscUpmPolit_p.gif \"UPM\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Course Notes for Learning Intelligent Systems" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## [Introduction to Machine Learning](2_0_0_Intro_ML.ipynb)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Table of Contents\n", "\n", "* [Model Tuning](#Model-Tuning)\n", "* [Load data and preprocessing](#Load-data-and-preprocessing)\n", "* [Train classifier](#Train-classifier)\n", "* [More about Pipelines](#More-about-Pipelines)\n", "* [Tuning the algorithm](#Tuning-the-algorithm)\n", "\t* [Grid Search for Hyperparameter optimization](#Grid-Search-for-Hyperparameter-optimization)\n", "* [Evaluating the algorithm](#Evaluating-the-algorithm)\n", "\t* [K-Fold validation](#K-Fold-validation)\n", "* [References](#References)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Model Tuning" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the previous [notebook](2_5_2_Decision_Tree_Model.ipynb), we got an accuracy of 9.47. Could we get a better accuracy if we tune the hyperparameters of the estimator?\n", "\n", "This notebook aims to learn how to tune an algorithm by optimizing its hyperparameters using grid search." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load data and preprocessing" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# library for displaying plots\n", "import matplotlib.pyplot as plt\n", "# display plots in the notebook \n", "%matplotlib inline\n", "\n", "## First, we repeat the load and preprocessing steps\n", "\n", "# Load data\n", "from sklearn import datasets\n", "iris = datasets.load_iris()\n", "\n", "# Training and test spliting\n", "from sklearn.model_selection import train_test_split\n", "\n", "x_iris, y_iris = iris.data, iris.target\n", "# Test set will be the 25% taken randomly\n", "x_train, x_test, y_train, y_test = train_test_split(x_iris, y_iris, test_size=0.25, random_state=33)\n", "\n", "# Preprocess: normalize\n", "from sklearn import preprocessing\n", "scaler = preprocessing.StandardScaler().fit(x_train)\n", "x_train = scaler.transform(x_train)\n", "x_test = scaler.transform(x_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Train classifier" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As previously, we train the model and evaluate the result." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import cross_val_score, KFold\n", "from sklearn.pipeline import Pipeline\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.tree import DecisionTreeClassifier\n", "import numpy as np\n", "\n", "# create a composite estimator made by a pipeline of preprocessing and the KNN model\n", "model = Pipeline([\n", " ('scaler', StandardScaler()),\n", " ('ds', DecisionTreeClassifier())\n", "])\n", "\n", "# Fit the model\n", "model.fit(x_train, y_train) \n", "\n", "# create a k-fold cross validation iterator of k=10 folds\n", "cv = KFold(10, shuffle=True, random_state=33)\n", "\n", "# by default the score used is the one returned by the score method of the estimator (accuracy)\n", "scores = cross_val_score(model, x_iris, y_iris, cv=cv)\n", "\n", "from scipy.stats import sem\n", "def mean_score(scores):\n", " return (\"Mean score: {0:.3f} (+/- {1:.3f})\").format(np.mean(scores), sem(scores))\n", "print(mean_score(scores))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We obtain an accuracy of 0.947." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## More about Pipelines" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When we use a Pipeline, every chained estimator is stored in the dictionary *named_steps* and as a list in *steps*." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.named_steps" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.steps" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can get the list of model parameters. As you will observe, the parameters of the estimators in the pipeline can be accessed using the <estimator>__<parameter> syntax. We will use this for tuning the parameters." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.get_params().keys()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's see what happens if we change a parameter." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.set_params(ds__class_weight='balanced')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Another alternative is to create the pipeline with the values we want to set, but it can be useful to access the estimators of the Pipeline." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model = Pipeline([\n", " ('scaler', StandardScaler()),\n", " ('ds', DecisionTreeClassifier(class_weight='balanced'))\n", "])\n", "model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The same approach can be used for accessing attributes such as *feature_importances_* we saw in the previous notebook." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Fit the model\n", "model.fit(x_train, y_train) \n", "# Using named_steps\n", "my_decision_tree = model.named_steps['ds']\n", "print(my_decision_tree.feature_importances_)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Using steps, we take the last step (-1) or the second step (1)\n", "#name, my_desision_tree = model.steps[1]\n", "name, my_desision_tree = model.steps[-1]\n", "print(my_decision_tree.feature_importances_)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tuning the algorithm" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that the most important feature for this classifier is `petal width`.\n", "\n", "Look at the [API](http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html) of *scikit-learn* to understand better the algorithm, as well as which parameters can be tuned. As you see, we can change several ones, such as *criterion*, *splitter*, *max_features*, *max_depth*, *min_samples_split*, *class_weight*, etc.\n", "\n", "We can get an estimator's full list of parameters with the method *get_params()*. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.get_params()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can try different values for these hyperparameters and observe the results." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Grid Search for Hyperparameter optimization" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Changing manually the hyperparameters to find their optimal values is not practical. Instead, we can consider finding the optimal value of the hyperparameters as an *optimization problem*. \n", "\n", "Sklearn has several optimization techniques, such as **grid search** and **randomized search**. In this notebook, we are going to introduce the former one." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sklearn provides an object that, given data, computes the score during the fit of an estimator on a hyperparameter grid and chooses the hyperparameters to maximize the cross-validation score. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import GridSearchCV\n", "from sklearn.tree import DecisionTreeClassifier\n", "import numpy as np\n", "\n", "param_grid = {'max_depth': np.arange(3, 10)} \n", "\n", "gs = GridSearchCV(DecisionTreeClassifier(), param_grid)\n", "\n", "gs.fit(x_train, y_train)\n", "\n", "# summarize the results of the grid search\n", "print(\"Best score: \", gs.best_score_)\n", "print(\"Best params: \", gs.best_params_)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we are going to show the results of the grid search" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# We print the score for each value of max_depth\n", "for i, max_depth in enumerate(gs.cv_results_['params']):\n", " print(\"%0.3f (+/-%0.03f) for %r\" % (gs.cv_results_['mean_test_score'][i],\n", " gs.cv_results_['std_test_score'][i] * 2,\n", " max_depth))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now evaluate the KFold with this optimized hyperparameter as follows." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# create a composite estimator made by a pipeline of preprocessing and the KNN model\n", "model = Pipeline([\n", " ('scaler', StandardScaler()),\n", " ('ds', DecisionTreeClassifier(max_depth=3))\n", "])\n", "\n", "# Fit the model\n", "model.fit(x_train, y_train) \n", "\n", "# create a k-fold cross validation iterator of k=10 folds\n", "cv = KFold(10, shuffle=True, random_state=33)\n", "\n", "# by default the score used is the one returned by the score method of the estimator (accuracy)\n", "scores = cross_val_score(model, x_iris, y_iris, cv=cv)\n", "def mean_score(scores):\n", " return (\"Mean score: {0:.3f} (+/- {1:.3f})\").format(np.mean(scores), sem(scores))\n", "print(mean_score(scores))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We have got an *improvement* from 0.947 to 0.953 with k-fold.\n", "\n", "We are now trying to fit the best combination of the hyperparameters of the algorithm. It can take some time to compute it." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Set the hyperparameters by cross-validation\n", "\n", "from sklearn.metrics import classification_report, recall_score, precision_score, make_scorer\n", "\n", "# set of hyperparameters to test\n", "tuned_hyperparameters = [{'max_depth': np.arange(3, 10),\n", "# 'max_weights': [1, 10, 100, 1000]},\n", " 'criterion': ['gini', 'entropy'], \n", " 'splitter': ['best', 'random'],\n", " # 'min_samples_leaf': [2, 5, 10],\n", " 'class_weight':['balanced', None],\n", " 'max_leaf_nodes': [None, 5, 10, 20]\n", " }]\n", "\n", "scores = ['precision', 'recall']\n", "\n", "for score in scores:\n", " print(\"# Tuning hyperparameters for %s\" % score)\n", " print()\n", "\n", " if score == 'precision':\n", " scorer = make_scorer(precision_score, average='weighted', zero_division=0)\n", " elif score == 'recall':\n", " scorer = make_scorer(recall_score, average='weighted', zero_division=0)\n", " \n", " # cv = the fold of the cross-validation cv, defaulted to 5\n", " gs = GridSearchCV(DecisionTreeClassifier(), tuned_hyperparameters, cv=10, scoring=scorer)\n", " gs.fit(x_train, y_train)\n", "\n", " print(\"Best hyperparameters set found on development set:\")\n", " print()\n", " print(gs.best_params_)\n", " print()\n", " print(\"Grid scores on development set:\")\n", " print()\n", " means = gs.cv_results_['mean_test_score']\n", " stds = gs.cv_results_['std_test_score']\n", "\n", " for mean_score, std_score, params in zip(means, stds, gs.cv_results_['params']):\n", " print(\"%0.3f (+/-%0.03f) for %r\" % (mean_score, std_score * 2, params))\n", " print()\n", "\n", " print(\"Detailed classification report:\")\n", " print()\n", " print(\"The model is trained on the full development set.\")\n", " print(\"The scores are computed on the full evaluation set.\")\n", " print()\n", " y_true, y_pred = y_test, gs.predict(x_test)\n", " print(classification_report(y_true, y_pred))\n", " print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's evaluate the resulting tuning." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# create a composite estimator made by a pipeline of preprocessing and the KNN model\n", "model = Pipeline([\n", " ('scaler', StandardScaler()),\n", " ('ds', DecisionTreeClassifier(max_leaf_nodes=20, criterion='gini', \n", " splitter='random', class_weight='balanced', max_depth=3))\n", "])\n", "\n", "# Fit the model\n", "model.fit(x_train, y_train) \n", "\n", "# create a k-fold cross validation iterator of k=10 folds\n", "cv = KFold(10, shuffle=True, random_state=33)\n", "\n", "# by default the score used is the one returned by the score method of the estimator (accuracy)\n", "scores = cross_val_score(model, x_iris, y_iris, cv=cv)\n", "def mean_score(scores):\n", " return (\"Mean score: {0:.3f} (+/- {1:.3f})\").format(np.mean(scores), sem(scores))\n", "print(mean_score(scores))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So, we get an average accuracy of 0.96!! Better than 0.947 (without tuning) and 0.953 (tuning only *max_depth*)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## References" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* [Plot the decision surface of a decision tree on the iris dataset](https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html)\n", "* [Hyperparameter estimation using grid search with cross-validation](http://scikit-learn.org/stable/auto_examples/model_selection/grid_search_digits.html)\n", "* [Decision trees in python with scikit-learn and pandas](http://chrisstrelioff.ws/sandbox/2015/06/08/decision_trees_in_python_with_scikit_learn_and_pandas.html)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Licence" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The notebook is freely licensed under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n", "\n", "© Carlos A. Iglesias, Universidad Politécnica de Madrid." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false } }, "nbformat": 4, "nbformat_minor": 1 }