{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "![](files/images/EscUpmPolit_p.gif \"UPM\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Course Notes for Learning Intelligent Systems"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, ©  Carlos A. Iglesias"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## [Introduction to Machine Learning](2_0_0_Intro_ML.ipynb)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Table of Contents\n",
    "* [Model Persistence](#Model-Persistence)\n",
    "* [References](#References)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Model Persistence"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The goal of this notebook is to learn how to save a model in the the scikit by using Python’s built-in persistence model, namely pickle\n",
    "\n",
    "First we recap the previous tasks: load data, preprocess and train the model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# load iris\n",
    "from sklearn import datasets\n",
    "iris = datasets.load_iris()\n",
    "\n",
    "# Training and test spliting\n",
    "from sklearn.model_selection import train_test_split\n",
    "x_iris, y_iris = iris.data, iris.target\n",
    "# Test set will be the 25% taken randomly\n",
    "x_train, x_test, y_train, y_test = train_test_split(x_iris, y_iris, test_size=0.25, random_state=33)\n",
    "\n",
    "# Create the model using the pipeline\n",
    "from sklearn.pipeline import Pipeline\n",
    "from sklearn.preprocessing import StandardScaler\n",
    "from sklearn.neighbors import KNeighborsClassifier\n",
    "\n",
    "# create a composite estimator made by a pipeline of preprocessing and the KNN model\n",
    "model = Pipeline([\n",
    "        ('scaler', StandardScaler()),\n",
    "        ('KNN', KNeighborsClassifier())\n",
    "])\n",
    "\n",
    "# Train the model\n",
    "model.fit(x_train, y_train) \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we are going to save the model to a data structure called *pickle*. A pickle is a dictionary and can be used as a file or a string."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pickle\n",
    "s = pickle.dumps(model)\n",
    "model2 = pickle.loads(s)\n",
    "model2.predict(x_iris[0:1])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "A more efficient alternative to pickle is joblib, especially for big data problems. In this case the model can only be saved to a file and not to a string."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# save model\n",
    "import joblib\n",
    "joblib.dump(model, 'filename.pkl') \n",
    "\n",
    "#load model\n",
    "model2 = joblib.load('filename.pkl') "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## References"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "* [Tutorial scikit-learn](http://scikit-learn.org/stable/tutorial/basic/tutorial.html)\n",
    "* [Model persistence in scikit-learn](http://scikit-learn.org/stable/modules/model_persistence.html#model-persistence)\n",
    "* [scikit-learn : Machine Learning Simplified](https://learning.oreilly.com/library/view/scikit-learn-machine/9781788833479/), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2017.\n",
    "* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka, Packt Publishing, 2019."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Licence\n",
    "The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/).  \n",
    "\n",
    "©  Carlos A. Iglesias, Universidad Politécnica de Madrid."
   ]
  }
 ],
 "metadata": {
  "datacleaner": {
   "position": {
    "top": "50px"
   },
   "python": {
    "varRefreshCmd": "try:\n    print(_datacleaner.dataframe_metadata())\nexcept:\n    print([])"
   },
   "window_display": false
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.12"
  },
  "latex_envs": {
   "LaTeX_envs_menu_present": true,
   "autocomplete": true,
   "bibliofile": "biblio.bib",
   "cite_by": "apalike",
   "current_citInitial": 1,
   "eqLabelWithNumbers": true,
   "eqNumInitial": 1,
   "hotkeys": {
    "equation": "Ctrl-E",
    "itemize": "Ctrl-I"
   },
   "labels_anchors": false,
   "latex_user_defs": false,
   "report_style_numbering": false,
   "user_envs_cfg": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}