import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets import seaborn as sns from sklearn.neighbors import KNeighborsClassifier # Taken from http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html def plot_classification_iris(): """ Plot knn classification of the iris dataset """ # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh n_neighbors = 15 # Create color maps cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue']) cmap_bold = ['darkorange', 'c', 'darkblue'] for weights in ['uniform', 'distance']: # we create an instance of Neighbours Classifier and fit the data. clf = KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(X, y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(figsize=(8, 6)) plt.contourf(xx, yy, Z, cmap=cmap_light) # Plot also the training points sns.scatterplot(x=X[:, 0], y=X[:, 1], hue=iris.target_names[y], palette=cmap_bold, alpha=1.0, edgecolor="black") plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.xlabel(iris.feature_names[0]) plt.ylabel(iris.feature_names[1]) plt.show()