{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "![](images/EscUpmPolit_p.gif \"UPM\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "# Course Notes for Learning Intelligent Systems"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "## [Introduction to  Visualization](00_Intro_Visualization.ipynb)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "# Dataset\n",
    "Seaborn includes several datasets. We can consult the available datasets and load them. \n",
    "\n",
    "The datasets are also available at https://github.com/mwaskom/seaborn-data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "from matplotlib import pyplot as plt\n",
    "import seaborn as sns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['anagrams',\n",
       " 'anscombe',\n",
       " 'attention',\n",
       " 'brain_networks',\n",
       " 'car_crashes',\n",
       " 'diamonds',\n",
       " 'dots',\n",
       " 'dowjones',\n",
       " 'exercise',\n",
       " 'flights',\n",
       " 'fmri',\n",
       " 'geyser',\n",
       " 'glue',\n",
       " 'healthexp',\n",
       " 'iris',\n",
       " 'mpg',\n",
       " 'penguins',\n",
       " 'planets',\n",
       " 'seaice',\n",
       " 'taxis',\n",
       " 'tips',\n",
       " 'titanic']"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sns.get_dataset_names()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>total_bill</th>\n",
       "      <th>tip</th>\n",
       "      <th>sex</th>\n",
       "      <th>smoker</th>\n",
       "      <th>day</th>\n",
       "      <th>time</th>\n",
       "      <th>size</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>16.99</td>\n",
       "      <td>1.01</td>\n",
       "      <td>Female</td>\n",
       "      <td>No</td>\n",
       "      <td>Sun</td>\n",
       "      <td>Dinner</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>10.34</td>\n",
       "      <td>1.66</td>\n",
       "      <td>Male</td>\n",
       "      <td>No</td>\n",
       "      <td>Sun</td>\n",
       "      <td>Dinner</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>21.01</td>\n",
       "      <td>3.50</td>\n",
       "      <td>Male</td>\n",
       "      <td>No</td>\n",
       "      <td>Sun</td>\n",
       "      <td>Dinner</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>23.68</td>\n",
       "      <td>3.31</td>\n",
       "      <td>Male</td>\n",
       "      <td>No</td>\n",
       "      <td>Sun</td>\n",
       "      <td>Dinner</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>24.59</td>\n",
       "      <td>3.61</td>\n",
       "      <td>Female</td>\n",
       "      <td>No</td>\n",
       "      <td>Sun</td>\n",
       "      <td>Dinner</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>25.29</td>\n",
       "      <td>4.71</td>\n",
       "      <td>Male</td>\n",
       "      <td>No</td>\n",
       "      <td>Sun</td>\n",
       "      <td>Dinner</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>8.77</td>\n",
       "      <td>2.00</td>\n",
       "      <td>Male</td>\n",
       "      <td>No</td>\n",
       "      <td>Sun</td>\n",
       "      <td>Dinner</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>26.88</td>\n",
       "      <td>3.12</td>\n",
       "      <td>Male</td>\n",
       "      <td>No</td>\n",
       "      <td>Sun</td>\n",
       "      <td>Dinner</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>15.04</td>\n",
       "      <td>1.96</td>\n",
       "      <td>Male</td>\n",
       "      <td>No</td>\n",
       "      <td>Sun</td>\n",
       "      <td>Dinner</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>14.78</td>\n",
       "      <td>3.23</td>\n",
       "      <td>Male</td>\n",
       "      <td>No</td>\n",
       "      <td>Sun</td>\n",
       "      <td>Dinner</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   total_bill   tip     sex smoker  day    time  size\n",
       "0       16.99  1.01  Female     No  Sun  Dinner     2\n",
       "1       10.34  1.66    Male     No  Sun  Dinner     3\n",
       "2       21.01  3.50    Male     No  Sun  Dinner     3\n",
       "3       23.68  3.31    Male     No  Sun  Dinner     2\n",
       "4       24.59  3.61  Female     No  Sun  Dinner     4\n",
       "5       25.29  4.71    Male     No  Sun  Dinner     4\n",
       "6        8.77  2.00    Male     No  Sun  Dinner     2\n",
       "7       26.88  3.12    Male     No  Sun  Dinner     4\n",
       "8       15.04  1.96    Male     No  Sun  Dinner     2\n",
       "9       14.78  3.23    Male     No  Sun  Dinner     2"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df = sns.load_dataset('tips')\n",
    "df.head(10)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "# References\n",
    "* [Seaborn](http://seaborn.pydata.org/index.html) documentation"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "## Licence\n",
    "The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/).  \n",
    "\n",
    "© Carlos A. Iglesias, Universidad Politécnica de Madrid."
   ]
  }
 ],
 "metadata": {
  "datacleaner": {
   "position": {
    "top": "50px"
   },
   "python": {
    "varRefreshCmd": "try:\n    print(_datacleaner.dataframe_metadata())\nexcept:\n    print([])"
   },
   "window_display": false
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  },
  "latex_envs": {
   "LaTeX_envs_menu_present": true,
   "autocomplete": true,
   "bibliofile": "biblio.bib",
   "cite_by": "apalike",
   "current_citInitial": 1,
   "eqLabelWithNumbers": true,
   "eqNumInitial": 1,
   "hotkeys": {
    "equation": "Ctrl-E",
    "itemize": "Ctrl-I"
   },
   "labels_anchors": false,
   "latex_user_defs": false,
   "report_style_numbering": false,
   "user_envs_cfg": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}