{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "![](files/images/EscUpmPolit_p.gif \"UPM\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Course Notes for Learning Intelligent Systems"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## [Introduction to Machine Learning](2_0_0_Intro_ML.ipynb)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Table of Contents\n",
    "* [Preprocessing](#Preprocessing)\n",
    "* [Training set and Test set](#Training-set-and-Test-set)\n",
    "* [Preprocessing](#Preprocessing)\n",
    "* [References](#References)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Preprocessing"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The goal of this notebook is to learn how to split the dataset into a training and a test datasets and then preprocess the data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn import datasets\n",
    "iris = datasets.load_iris()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Training set and Test set"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "A common practice in machine learning to evaluate an algorithm is to split the data at hand into two sets, one that we call the **training set** on which we learn data properties and one that we call the **testing set** on which we test these properties. \n",
    "\n",
    "We are going to use *scikit-learn* to split the data into random training and testing sets. We follow the ratio 75% for training and 25% for testing. We use `random_state` to ensure that the result is always the same and it is reproducible. (Otherwise, we would get different training and testing sets every time)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.model_selection import train_test_split\n",
    "x_iris, y_iris = iris.data, iris.target\n",
    "# Test set will be the 25% taken randomly\n",
    "x_train, x_test, y_train, y_test = train_test_split(x_iris, y_iris, test_size=0.25, random_state=33)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Dimensions of train and testing\n",
    "print(x_train.shape, x_test.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Test set\n",
    "print (x_test)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Preprocessing"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Standardization of datasets is a common requirement for many machine learning estimators implemented in the scikit; they might behave badly if the individual features do not more or less look like standard normally distributed data: Gaussian with zero mean and unit variance.\n",
    "\n",
    "The preprocessing module further provides a utility class `StandardScaler` to compute the mean and standard deviation on a training set. Later, the same transformation will be applied on the testing set."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Standardize the features\n",
    "from sklearn import preprocessing\n",
    "scaler = preprocessing.StandardScaler().fit(x_train)\n",
    "x_train = scaler.transform(x_train)\n",
    "x_test = scaler.transform(x_test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# As we see, the iris dataset is now  normalized\n",
    "print(x_test)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## References"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "* [Feature selection](http://scikit-learn.org/stable/modules/feature_selection.html)\n",
    "* [Classification probability](http://scikit-learn.org/stable/auto_examples/classification/plot_classification_probability.html)\n",
    "* [Matplotlib web page](http://matplotlib.org/index.html)\n",
    "* [Using matlibplot in IPython](http://ipython.readthedocs.org/en/stable/interactive/plotting.html)\n",
    "* [Seaborn Tutorial](https://stanford.edu/~mwaskom/software/seaborn/tutorial.html)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Licences\n",
    "The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/).  \n",
    "\n",
    "© Carlos A. Iglesias, Universidad Politécnica de Madrid."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.6"
  },
  "latex_envs": {
   "LaTeX_envs_menu_present": true,
   "autocomplete": true,
   "bibliofile": "biblio.bib",
   "cite_by": "apalike",
   "current_citInitial": 1,
   "eqLabelWithNumbers": true,
   "eqNumInitial": 1,
   "hotkeys": {
    "equation": "Ctrl-E",
    "itemize": "Ctrl-I"
   },
   "labels_anchors": false,
   "latex_user_defs": false,
   "report_style_numbering": false,
   "user_envs_cfg": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}