{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "![](images/EscUpmPolit_p.gif \"UPM\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Course Notes for Learning Intelligent Systems" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Semantic Models" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Table of Contents\n", "* [Objectives](#Objectives)\n", "* [Corpus](#Corpus)\n", "* [Converting Scikit-learn to gensim](#Converting-Scikit-learn-to-gensim)\n", "* [Latent Dirichlet Allocation (LDA)](#Latent-Dirichlet-Allocation-%28LDA%29)\n", "* [Latent Semantic Indexing (LSI)](#Latent-Semantic-Indexing-%28LSI%29)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Objectives" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this session we provide a quick overview of the semantic models presented during the classes. In this case, we will use a real corpus so that we can extract meaningful patterns.\n", "\n", "The main objectives of this session are:\n", "* Understand the models and their differences\n", "* Learn to use some of the most popular NLP libraries" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Corpus" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We are going to use on of the corpus that come prepackaged with Scikit-learn: the [20 newsgroup datase](http://qwone.com/~jason/20Newsgroups/). The 20 newsgroup dataset contains 20k documents that belong to 20 topics.\n", "\n", "We inspect now the corpus using the facilities from Scikit-learn, as explain in [scikit-learn](http://scikit-learn.org/stable/datasets/twenty_newsgroups.html#newsgroups)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(2034, 2807)" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.datasets import fetch_20newsgroups\n", "\n", "# We filter only some categories, otherwise we have 20 categories\n", "categories = ['alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space']\n", "# We remove metadata to avoid bias in the classification\n", "newsgroups_train = fetch_20newsgroups(subset='train', \n", " remove=('headers', 'footers', 'quotes'), \n", " categories=categories)\n", "newsgroups_test = fetch_20newsgroups(subset='test', remove=('headers', 'footers', 'quotes'),\n", " categories=categories)\n", "\n", "\n", "# Obtain a vector\n", "\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "\n", "vectorizer = TfidfVectorizer(analyzer='word', stop_words='english', min_df=10)\n", "\n", "vectors_train = vectorizer.fit_transform(newsgroups_train.data)\n", "vectors_train.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Converting Scikit-learn to gensim" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Although scikit-learn provides an LDA implementation, it is more popular the package *gensim*, which also provides an LSI implementation, as well as other functionalities. Fortunately, scikit-learn sparse matrices can be used in Gensim using the function *matutils.Sparse2Corpus()*. Anyway, if you are using intensively LDA,it can be convenient to create the corpus with their functions.\n", "\n", "You should install first:\n", "\n", "* *gensim*. Run 'conda install gensim' in a terminal.\n", "* *python-Levenshtein*. Run 'conda install python-Levenshtein' in a terminal" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: gensim in /home/cif/anaconda3/lib/python3.10/site-packages (4.3.1)\n", "Requirement already satisfied: scipy>=1.7.0 in /home/cif/anaconda3/lib/python3.10/site-packages (from gensim) (1.10.1)\n", "Requirement already satisfied: smart-open>=1.8.1 in /home/cif/anaconda3/lib/python3.10/site-packages (from gensim) (6.3.0)\n", "Requirement already satisfied: numpy>=1.18.5 in /home/cif/anaconda3/lib/python3.10/site-packages (from gensim) (1.24.2)\n", "Note: you may need to restart the kernel to use updated packages.\n", "Requirement already satisfied: python-Levenshtein in /home/cif/anaconda3/lib/python3.10/site-packages (0.21.0)\n", "Requirement already satisfied: Levenshtein==0.21.0 in /home/cif/anaconda3/lib/python3.10/site-packages (from python-Levenshtein) (0.21.0)\n", "Requirement already satisfied: rapidfuzz<4.0.0,>=2.3.0 in /home/cif/anaconda3/lib/python3.10/site-packages (from Levenshtein==0.21.0->python-Levenshtein) (3.0.0)\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ "%pip install gensim\n", "%pip install python-Levenshtein" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "from gensim import matutils\n", "\n", "vocab = vectorizer.get_feature_names_out()\n", "\n", "dictionary = dict([(i, s) for i, s in enumerate(vectorizer.get_feature_names_out())])\n", "corpus_tfidf = matutils.Sparse2Corpus(vectors_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Latent Dirichlet Allocation (LDA)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Although scikit-learn provides an LDA implementation, it is more popular the package *gensim*, which also provides an LSI implementation, as well as other functionalities. Fortunately, scikit-learn sparse matrices can be used in Gensim using the function *matutils.Sparse2Corpus()*." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "from gensim.models.ldamodel import LdaModel\n", "\n", "# It takes a long time\n", "\n", "# train the lda model, choosing number of topics equal to 4\n", "lda = LdaModel(corpus_tfidf, num_topics=4, passes=20, id2word=dictionary)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", " '0.004*\"central\" + 0.004*\"assumptions\" + 0.004*\"matthew\" + 0.004*\"define\" + 0.004*\"holes\" + 0.003*\"killing\" + 0.003*\"item\" + 0.003*\"curious\" + 0.003*\"going\" + 0.003*\"presentations\"'),\n", " (1,\n", " '0.002*\"mechanism\" + 0.002*\"led\" + 0.002*\"apple\" + 0.002*\"color\" + 0.002*\"mormons\" + 0.002*\"activity\" + 0.002*\"concepts\" + 0.002*\"frank\" + 0.002*\"platform\" + 0.002*\"fault\"'),\n", " (2,\n", " '0.005*\"objects\" + 0.005*\"obtained\" + 0.003*\"manhattan\" + 0.003*\"capability\" + 0.003*\"education\" + 0.003*\"men\" + 0.003*\"photo\" + 0.003*\"decent\" + 0.003*\"environmental\" + 0.003*\"pain\"'),\n", " (3,\n", " '0.004*\"car\" + 0.004*\"contain\" + 0.004*\"groups\" + 0.004*\"center\" + 0.004*\"evil\" + 0.004*\"maintain\" + 0.004*\"comets\" + 0.004*\"88\" + 0.004*\"density\" + 0.003*\"company\"')]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# check the topics\n", "lda.print_topics(4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since there are some problems for translating the corpus from Scikit-Learn to LSI, we are now going to create 'natively' the corpus with Gensim." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# import the gensim.corpora module to generate dictionary\n", "from gensim import corpora\n", "\n", "from nltk import word_tokenize\n", "from nltk.corpus import stopwords\n", "from nltk import RegexpTokenizer\n", "\n", "import string\n", "\n", "def preprocess(words):\n", " tokenizer = RegexpTokenizer('[A-Z]\\w+')\n", " tokens = [w.lower() for w in tokenizer.tokenize(words)]\n", " stoplist = stopwords.words('english')\n", " tokens_stop = [w for w in tokens if w not in stoplist]\n", " punctuation = set(string.punctuation)\n", " tokens_clean = [w for w in tokens_stop if w not in punctuation]\n", " return tokens_clean\n", "\n", "#words = preprocess(newsgroups_train.data)\n", "#dictionary = corpora.Dictionary(newsgroups_train.data)\n", "\n", "texts = [preprocess(document) for document in newsgroups_train.data]\n", "\n", "dictionary = corpora.Dictionary(texts)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Dictionary<10913 unique tokens: ['cel', 'ds', 'hi', 'nothing', 'prj']...>\n" ] } ], "source": [ "# You can save the dictionary\n", "dictionary.save('newsgroup.dict.texts')\n", "\n", "print(dictionary)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Generate a list of docs, where each doc is a list of words\n", "\n", "docs = [preprocess(doc) for doc in newsgroups_train.data]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# import the gensim.corpora module to generate dictionary\n", "from gensim import corpora\n", "\n", "dictionary = corpora.Dictionary(docs)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Dictionary<10913 unique tokens: ['cel', 'ds', 'hi', 'nothing', 'prj']...>\n" ] } ], "source": [ "# We can print the dictionary, it is a mappying of id and tokens\n", "\n", "print(dictionary)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "# construct the corpus representing each document as a bag-of-words (bow) vector\n", "corpus = [dictionary.doc2bow(doc) for doc in docs]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "from gensim.models import TfidfModel\n", "\n", "# calculate tfidf\n", "tfidf_model = TfidfModel(corpus)\n", "corpus_tfidf = tfidf_model[corpus]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[(0, 0.24093628445650234), (1, 0.5700978153855775), (2, 0.10438175896914427), (3, 0.1598114653031772), (4, 0.722808853369507), (5, 0.24093628445650234)]\n" ] } ], "source": [ "#print tf-idf of first document\n", "print(corpus_tfidf[0])" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "from gensim.models.ldamodel import LdaModel\n", "\n", "# train the lda model, choosing number of topics equal to 4, it takes a long time\n", "\n", "lda_model = LdaModel(corpus_tfidf, num_topics=4, passes=20, id2word=dictionary)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", " '0.011*\"mary\" + 0.007*\"ns\" + 0.006*\"joseph\" + 0.006*\"lucky\" + 0.006*\"ssrt\" + 0.005*\"god\" + 0.005*\"unfortunately\" + 0.004*\"rayshade\" + 0.004*\"phil\" + 0.004*\"nasa\"'),\n", " (1,\n", " '0.009*\"thanks\" + 0.009*\"targa\" + 0.008*\"whatever\" + 0.008*\"baptist\" + 0.007*\"islam\" + 0.006*\"cheers\" + 0.006*\"kent\" + 0.006*\"zoroastrians\" + 0.006*\"joy\" + 0.006*\"lot\"'),\n", " (2,\n", " '0.008*\"moon\" + 0.008*\"really\" + 0.008*\"western\" + 0.007*\"plane\" + 0.006*\"samaritan\" + 0.006*\"crusades\" + 0.006*\"baltimore\" + 0.005*\"bob\" + 0.005*\"septuagint\" + 0.005*\"virtual\"'),\n", " (3,\n", " '0.009*\"koresh\" + 0.008*\"bible\" + 0.008*\"jeff\" + 0.007*\"basically\" + 0.006*\"gerald\" + 0.006*\"bull\" + 0.005*\"pd\" + 0.004*\"also\" + 0.003*\"dam\" + 0.003*\"feiner\"')]" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# check the topics\n", "lda_model.print_topics(4)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[(0, 0.09161347), (1, 0.1133858), (2, 0.103424065), (3, 0.69157666)]\n" ] } ], "source": [ "# check the lsa vector for the first document\n", "corpus_lda = lda_model[corpus_tfidf]\n", "print(corpus_lda[0])" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[('lord', 1), ('god', 2)]\n" ] } ], "source": [ "#predict topics of a new doc\n", "new_doc = \"God is love and God is the Lord\"\n", "#transform into BOW space\n", "bow_vector = dictionary.doc2bow(preprocess(new_doc))\n", "print([(dictionary[id], count) for id, count in bow_vector])" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[(0, 0.066217005), (1, 0.8084562), (2, 0.062542014), (3, 0.0627848)]\n" ] } ], "source": [ "#transform into LDA space\n", "lda_vector = lda_model[bow_vector]\n", "print(lda_vector)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.009*\"thanks\" + 0.009*\"targa\" + 0.008*\"whatever\" + 0.008*\"baptist\" + 0.007*\"islam\" + 0.006*\"cheers\" + 0.006*\"kent\" + 0.006*\"zoroastrians\" + 0.006*\"joy\" + 0.006*\"lot\"\n" ] } ], "source": [ "# print the document's single most prominent LDA topic\n", "print(lda_model.print_topic(max(lda_vector, key=lambda item: item[1])[0]))" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[(0, 0.11006463), (1, 0.6813435), (2, 0.10399808), (3, 0.10459379)]\n", "0.009*\"thanks\" + 0.009*\"targa\" + 0.008*\"whatever\" + 0.008*\"baptist\" + 0.007*\"islam\" + 0.006*\"cheers\" + 0.006*\"kent\" + 0.006*\"zoroastrians\" + 0.006*\"joy\" + 0.006*\"lot\"\n" ] } ], "source": [ "lda_vector_tfidf = lda_model[tfidf_model[bow_vector]]\n", "print(lda_vector_tfidf)\n", "# print the document's single most prominent LDA topic\n", "print(lda_model.print_topic(max(lda_vector_tfidf, key=lambda item: item[1])[0]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Latent Semantic Indexing (LSI)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "from gensim.models.lsimodel import LsiModel\n", "\n", "#It takes a long time\n", "\n", "# train the lsi model, choosing number of topics equal to 20\n", "\n", "\n", "lsi_model = LsiModel(corpus_tfidf, num_topics=4, id2word=dictionary)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", " '-0.769*\"god\" + -0.345*\"jesus\" + -0.235*\"bible\" + -0.203*\"christian\" + -0.149*\"christians\" + -0.107*\"christ\" + -0.089*\"well\" + -0.085*\"koresh\" + -0.082*\"kent\" + -0.081*\"christianity\"'),\n", " (1,\n", " '-0.863*\"thanks\" + -0.255*\"please\" + -0.159*\"hello\" + -0.152*\"hi\" + 0.123*\"god\" + -0.112*\"sorry\" + -0.088*\"could\" + -0.074*\"windows\" + -0.067*\"jpeg\" + -0.063*\"gif\"'),\n", " (2,\n", " '0.779*\"well\" + -0.229*\"god\" + 0.165*\"yes\" + -0.154*\"thanks\" + 0.135*\"ico\" + 0.134*\"tek\" + 0.131*\"queens\" + 0.131*\"bronx\" + 0.131*\"beauchaine\" + 0.131*\"manhattan\"'),\n", " (3,\n", " '-0.342*\"well\" + 0.335*\"ico\" + 0.333*\"tek\" + 0.327*\"bronx\" + 0.327*\"queens\" + 0.327*\"beauchaine\" + 0.325*\"manhattan\" + 0.305*\"bob\" + 0.304*\"com\" + 0.073*\"god\"')]" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# check the topics\n", "lsi_model.print_topics(4)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[(0, 0.24093628445650234), (1, 0.5700978153855775), (2, 0.10438175896914427), (3, 0.1598114653031772), (4, 0.722808853369507), (5, 0.24093628445650234)]\n" ] } ], "source": [ "# check the lsi vector for the first document\n", "print(corpus_tfidf[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# References" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* [NLTK Book. Natural Language Processing with Python. Steven Bird, Ewan Klein, and Edward Loper. O'Reilly Media, 2009 ](http://www.nltk.org/book_1ed/)\n", "* [NLTK Essentials, Nitin Hardeniya, Packt Publishing, 2015](http://proquest.safaribooksonline.com/search?q=NLTK%20Essentials)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Licence" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n", "\n", "© Carlos A. Iglesias, Universidad Politécnica de Madrid." ] } ], "metadata": { "datacleaner": { "position": { "top": "50px" }, "python": { "varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])" }, "window_display": false }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.10" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false } }, "nbformat": 4, "nbformat_minor": 1 }