{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "![](images/EscUpmPolit_p.gif \"UPM\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "# Course Notes for Learning Intelligent Systems" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "## [Introduction to Visualization](00_Intro_Visualization.ipynb)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Dataset\n", "Seaborn includes several datasets. We can consult the available datasets and load them. \n", "\n", "The datasets are also available at https://github.com/mwaskom/seaborn-data." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "import pandas as pd\n", "from matplotlib import pyplot as plt\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "text/plain": [ "['anagrams',\n", " 'anscombe',\n", " 'attention',\n", " 'brain_networks',\n", " 'car_crashes',\n", " 'diamonds',\n", " 'dots',\n", " 'dowjones',\n", " 'exercise',\n", " 'flights',\n", " 'fmri',\n", " 'geyser',\n", " 'glue',\n", " 'healthexp',\n", " 'iris',\n", " 'mpg',\n", " 'penguins',\n", " 'planets',\n", " 'seaice',\n", " 'taxis',\n", " 'tips',\n", " 'titanic']" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sns.get_dataset_names()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "text/html": [ "
\n", " | total_bill | \n", "tip | \n", "sex | \n", "smoker | \n", "day | \n", "time | \n", "size | \n", "
---|---|---|---|---|---|---|---|
0 | \n", "16.99 | \n", "1.01 | \n", "Female | \n", "No | \n", "Sun | \n", "Dinner | \n", "2 | \n", "
1 | \n", "10.34 | \n", "1.66 | \n", "Male | \n", "No | \n", "Sun | \n", "Dinner | \n", "3 | \n", "
2 | \n", "21.01 | \n", "3.50 | \n", "Male | \n", "No | \n", "Sun | \n", "Dinner | \n", "3 | \n", "
3 | \n", "23.68 | \n", "3.31 | \n", "Male | \n", "No | \n", "Sun | \n", "Dinner | \n", "2 | \n", "
4 | \n", "24.59 | \n", "3.61 | \n", "Female | \n", "No | \n", "Sun | \n", "Dinner | \n", "4 | \n", "
5 | \n", "25.29 | \n", "4.71 | \n", "Male | \n", "No | \n", "Sun | \n", "Dinner | \n", "4 | \n", "
6 | \n", "8.77 | \n", "2.00 | \n", "Male | \n", "No | \n", "Sun | \n", "Dinner | \n", "2 | \n", "
7 | \n", "26.88 | \n", "3.12 | \n", "Male | \n", "No | \n", "Sun | \n", "Dinner | \n", "4 | \n", "
8 | \n", "15.04 | \n", "1.96 | \n", "Male | \n", "No | \n", "Sun | \n", "Dinner | \n", "2 | \n", "
9 | \n", "14.78 | \n", "3.23 | \n", "Male | \n", "No | \n", "Sun | \n", "Dinner | \n", "2 | \n", "