mirror of
https://github.com/gsi-upm/senpy
synced 2024-11-22 16:12:29 +00:00
156 lines
5.7 KiB
Python
156 lines
5.7 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
import re
|
|
import nltk
|
|
import csv
|
|
import sys
|
|
import os
|
|
import unicodedata
|
|
import string
|
|
import xml.etree.ElementTree as ET
|
|
import math
|
|
|
|
from sklearn.svm import LinearSVC
|
|
from sklearn.feature_extraction import DictVectorizer
|
|
|
|
from nltk import bigrams
|
|
from nltk import trigrams
|
|
from nltk.corpus import stopwords
|
|
|
|
from pattern.en import parse as parse_en
|
|
from pattern.es import parse as parse_es
|
|
from senpy.plugins import SentimentPlugin, SenpyPlugin
|
|
from senpy.models import Results, EmotionSet, Entry, Emotion
|
|
|
|
|
|
class EmotionTextPlugin(SentimentPlugin):
|
|
|
|
def activate(self, *args, **kwargs):
|
|
self._stopwords = stopwords.words('english')
|
|
self._local_path=os.path.dirname(os.path.abspath(__file__))
|
|
|
|
def _my_preprocessor(self, text):
|
|
|
|
regHttp = re.compile('(http://)[a-zA-Z0-9]*.[a-zA-Z0-9/]*(.[a-zA-Z0-9]*)?')
|
|
regHttps = re.compile('(https://)[a-zA-Z0-9]*.[a-zA-Z0-9/]*(.[a-zA-Z0-9]*)?')
|
|
regAt = re.compile('@([a-zA-Z0-9]*[*_/&%#@$]*)*[a-zA-Z0-9]*')
|
|
text = re.sub(regHttp, '', text)
|
|
text = re.sub(regAt, '', text)
|
|
text = re.sub('RT : ', '', text)
|
|
text = re.sub(regHttps, '', text)
|
|
text = re.sub('[0-9]', '', text)
|
|
text = self._delete_punctuation(text)
|
|
return text
|
|
|
|
def _delete_punctuation(self, text):
|
|
|
|
exclude = set(string.punctuation)
|
|
s = ''.join(ch for ch in text if ch not in exclude)
|
|
return s
|
|
|
|
def _extract_ngrams(self, text, lang):
|
|
|
|
unigrams_lemmas = []
|
|
unigrams_words = []
|
|
pos_tagged = []
|
|
if lang == 'es':
|
|
sentences = parse_es(text,lemmata=True).split()
|
|
else:
|
|
sentences = parse_en(text,lemmata=True).split()
|
|
|
|
for sentence in sentences:
|
|
for token in sentence:
|
|
if token[0].lower() not in self._stopwords:
|
|
unigrams_words.append(token[0].lower())
|
|
unigrams_lemmas.append(token[4])
|
|
pos_tagged.append(token[1])
|
|
|
|
return unigrams_lemmas,unigrams_words,pos_tagged
|
|
|
|
def _find_ngrams(self, input_list, n):
|
|
return zip(*[input_list[i:] for i in range(n)])
|
|
|
|
def _emotion_calculate(self, VAD):
|
|
emotion=''
|
|
value=10000000000000000000000.0
|
|
for state in self.centroids:
|
|
valence=VAD[0]-self.centroids[state]['V']
|
|
arousal=VAD[1]-self.centroids[state]['A']
|
|
dominance=VAD[2]-self.centroids[state]['D']
|
|
new_value=math.sqrt((valence*valence)+(arousal*arousal)+(dominance*dominance))
|
|
if new_value < value:
|
|
value=new_value
|
|
emotion=state
|
|
return emotion
|
|
|
|
def _extract_features(self, tweet,dictionary,lang):
|
|
feature_set={}
|
|
ngrams_lemmas,ngrams_words,pos_tagged = self._extract_ngrams(tweet,lang)
|
|
pos_tags={'NN':'NN', 'NNS':'NN', 'JJ':'JJ', 'JJR':'JJ', 'JJS':'JJ', 'RB':'RB', 'RBR':'RB',
|
|
'RBS':'RB', 'VB':'VB', 'VBD':'VB', 'VGB':'VB', 'VBN':'VB', 'VBP':'VB', 'VBZ':'VB'}
|
|
totalVAD=[0,0,0]
|
|
matches=0
|
|
for word in range(len(ngrams_lemmas)):
|
|
VAD=[]
|
|
if ngrams_lemmas[word] in dictionary:
|
|
matches+=1
|
|
totalVAD = [totalVAD[0]+float(dictionary[ngrams_lemmas[word]]['V']),
|
|
totalVAD[1]+float(dictionary[ngrams_lemmas[word]]['A']),
|
|
totalVAD[2]+float(dictionary[ngrams_lemmas[word]]['D'])]
|
|
elif ngrams_words[word] in dictionary:
|
|
matches+=1
|
|
totalVAD = [totalVAD[0]+float(dictionary[ngrams_words[word]]['V']),
|
|
totalVAD[1]+float(dictionary[ngrams_words[word]]['A']),
|
|
totalVAD[2]+float(dictionary[ngrams_words[word]]['D'])]
|
|
if matches==0:
|
|
emotion='neutral'
|
|
else:
|
|
totalVAD=[totalVAD[0]/matches,totalVAD[1]/matches,totalVAD[2]/matches]
|
|
emotion=self._emotion_calculate(totalVAD)
|
|
feature_set['emotion']=emotion
|
|
feature_set['V']=totalVAD[0]
|
|
feature_set['A']=totalVAD[1]
|
|
feature_set['D']=totalVAD[2]
|
|
return feature_set
|
|
|
|
def analyse_entry(self, entry, params):
|
|
|
|
text_input = entry.get("text", None)
|
|
|
|
text= self._my_preprocessor(text_input)
|
|
dictionary={}
|
|
lang = params.get("language", "auto")
|
|
if lang == 'es':
|
|
with open(self.anew_path_es,'rb') as tabfile:
|
|
reader = csv.reader(tabfile, delimiter='\t')
|
|
for row in reader:
|
|
dictionary[row[2]]={}
|
|
dictionary[row[2]]['V']=row[3]
|
|
dictionary[row[2]]['A']=row[5]
|
|
dictionary[row[2]]['D']=row[7]
|
|
else:
|
|
with open(self.anew_path_en,'rb') as tabfile:
|
|
reader = csv.reader(tabfile, delimiter='\t')
|
|
for row in reader:
|
|
dictionary[row[0]]={}
|
|
dictionary[row[0]]['V']=row[2]
|
|
dictionary[row[0]]['A']=row[4]
|
|
dictionary[row[0]]['D']=row[6]
|
|
|
|
feature_set=self._extract_features(text,dictionary,lang)
|
|
|
|
emotions = EmotionSet()
|
|
emotions.id = "Emotions0"
|
|
|
|
emotion1 = Emotion(id="Emotion0")
|
|
|
|
emotion1["onyx:hasEmotionCategory"] = self.emotions_ontology[feature_set['emotion']]
|
|
emotion1["http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#valence"] = feature_set['V']
|
|
emotion1["http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#arousal"] = feature_set['A']
|
|
emotion1["http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#dominance"] = feature_set['D']
|
|
|
|
emotions.onyx__hasEmotion.append(emotion1)
|
|
entry.emotions = [emotions,]
|
|
|
|
yield entry
|