1
0
mirror of https://github.com/gsi-upm/senpy synced 2024-11-14 04:32:29 +00:00
senpy/sentiment-vader/vader_plugin.py
J. Fernando Sánchez 4f286057c9 Update to senpy 0.20
2019-04-04 12:56:46 +02:00

75 lines
1.9 KiB
Python

# -*- coding: utf-8 -*-
from vaderSentiment import sentiment
from senpy.plugins import SentimentBox, SenpyPlugin
from senpy.models import Results, Sentiment, Entry
import logging
class VaderSentimentPlugin(SentimentBox):
'''
Sentiment classifier using vaderSentiment module. Params accepted: Language: {en, es}. The output uses Marl ontology developed at GSI UPM for semantic web.
'''
name = "sentiment-vader"
module = "sentiment-vader"
author = "@icorcuera"
version = "0.1.1"
extra_params = {
"language": {
"description": "language of the input",
"@id": "lang_rand",
"aliases": ["language", "l"],
"default": "auto",
"options": ["es", "en", "auto"]
},
"aggregate": {
"description": "Show only the strongest sentiment (aggregate) or all sentiments",
"aliases": ["aggregate","agg"],
"options": [True, False],
"default": False
}
}
requirements = {}
_VADER_KEYS = ['pos', 'neu', 'neg']
binary = False
def predict_one(self, features, activity):
text_input = ' '.join(features)
scores = sentiment(text_input)
sentiments = []
for k in self._VADER_KEYS:
sentiments.append(scores[k])
if activity.param('aggregate'):
m = max(sentiments)
sentiments = [k if k==m else None for k in sentiments]
return sentiments
test_cases = []
test_cases = [
{
'input': 'I am tired :(',
'polarity': 'marl:Negative'
},
{
'input': 'I love pizza :(',
'polarity': 'marl:Positive'
},
{
'input': 'I enjoy going to the cinema :)',
'polarity': 'marl:Negative'
},
{
'input': 'This cake is disgusting',
'polarity': 'marl:Negative'
},
]