mirror of
https://github.com/gsi-upm/senpy
synced 2024-11-14 12:42:27 +00:00
41 lines
1.5 KiB
Python
41 lines
1.5 KiB
Python
import requests
|
|
import json
|
|
|
|
from senpy.plugins import SentimentPlugin
|
|
from senpy.models import Results, Sentiment, Entry
|
|
|
|
|
|
class Sentiment140Plugin(SentimentPlugin):
|
|
def analyse(self, **params):
|
|
lang = params.get("language", "auto")
|
|
res = requests.post("http://www.sentiment140.com/api/bulkClassifyJson",
|
|
json.dumps({"language": lang,
|
|
"data": [{"text": params["input"]}]
|
|
}
|
|
)
|
|
)
|
|
|
|
p = params.get("prefix", None)
|
|
response = Results(prefix=p)
|
|
polarity_value = self.maxPolarityValue*int(res.json()["data"][0]
|
|
["polarity"]) * 0.25
|
|
polarity = "marl:Neutral"
|
|
neutral_value = self.maxPolarityValue / 2.0
|
|
if polarity_value > neutral_value:
|
|
polarity = "marl:Positive"
|
|
elif polarity_value < neutral_value:
|
|
polarity = "marl:Negative"
|
|
|
|
entry = Entry(id="Entry0",
|
|
nif__isString=params["input"])
|
|
sentiment = Sentiment(id="Sentiment0",
|
|
prefix=p,
|
|
marl__hasPolarity=polarity,
|
|
marl__polarityValue=polarity_value)
|
|
sentiment.prov__wasGeneratedBy = self.id
|
|
entry.sentiments = []
|
|
entry.sentiments.append(sentiment)
|
|
entry.language = lang
|
|
response.entries.append(entry)
|
|
return response
|