1
0
mirror of https://github.com/gsi-upm/senpy synced 2024-11-14 04:32:29 +00:00
senpy/sentiwn.py
J. Fernando Sánchez 7c959aace8 Squashed 'sentiment-basic/' content from commit beb8e31
git-subtree-dir: sentiment-basic
git-subtree-split: beb8e311619059a0c660411edef1cf95b3826c0a
2018-06-12 10:01:45 +02:00

70 lines
2.2 KiB
Python

#!/usr/bin/env python
"""
Author : Jaganadh Gopinadhan <jaganadhg@gmail.com>
Copywright (C) : Jaganadh Gopinadhan
Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import sys,os
import re
from nltk.corpus import wordnet
class SentiWordNet(object):
"""
Interface to SentiWordNet
"""
def __init__(self,swn_file):
"""
"""
self.swn_file = swn_file
self.pos_synset = self.__parse_swn_file()
def __parse_swn_file(self):
"""
Parse the SentiWordNet file and populate the POS and SynsetID hash
"""
pos_synset_hash = {}
swn_data = open(self.swn_file,'r').readlines()
head_less_swn_data = filter((lambda line: not re.search(r"^\s*#",\
line)), swn_data)
for data in head_less_swn_data:
fields = data.strip().split("\t")
try:
pos,syn_set_id,pos_score,neg_score,syn_set_score,\
gloss = fields
except:
print "Found data without all details"
pass
if pos and syn_set_score:
pos_synset_hash[(pos,int(syn_set_id))] = (float(pos_score),\
float(neg_score))
return pos_synset_hash
def get_score(self,word,pos=None):
"""
Get score for a given word/word pos combination
"""
senti_scores = []
synsets = wordnet.synsets(word,pos)
for synset in synsets:
if self.pos_synset.has_key((synset.pos(), synset.offset())):
pos_val, neg_val = self.pos_synset[(synset.pos(), synset.offset())]
senti_scores.append({"pos":pos_val,"neg":neg_val,\
"obj": 1.0 - (pos_val - neg_val),'synset':synset})
return senti_scores