mirror of
https://github.com/gsi-upm/senpy
synced 2024-11-24 17:12:29 +00:00
163 lines
6.2 KiB
ReStructuredText
163 lines
6.2 KiB
ReStructuredText
Developing new plugins
|
|
----------------------
|
|
Each plugin represents a different analysis process.There are two types of files that are needed by senpy for loading a plugin:
|
|
|
|
Plugins Interface
|
|
=======
|
|
- Definition file, has the ".senpy" extension.
|
|
- Code file, is a python file.
|
|
|
|
Plugins Definitions
|
|
===================
|
|
|
|
The definition file can be written in JSON or YAML, where the data representation consists on attribute-value pairs.
|
|
The principal attributes are:
|
|
|
|
* name: plugin name used in senpy to call the plugin.
|
|
* module: indicates the module that will be loaded
|
|
|
|
.. code:: python
|
|
|
|
{
|
|
"name" : "senpyPlugin",
|
|
"module" : "{python code file}"
|
|
}
|
|
|
|
.. code:: python
|
|
|
|
name: senpyPlugin
|
|
module: {python code file}
|
|
|
|
Plugins Code
|
|
=================
|
|
|
|
The basic methods in a plugin are:
|
|
|
|
* __init__
|
|
* activate: used to load memory-hungry resources
|
|
* deactivate: used to free up resources
|
|
* analyse: called in every user requests. It takes in the parameters supplied by a user and should return a senpy Response.
|
|
|
|
Plugins are loaded asynchronously, so don't worry if the activate method takes too long. The plugin will be marked as activated once it is finished executing the method.
|
|
|
|
F.A.Q.
|
|
======
|
|
If I'm using a classifier, where should I train it?
|
|
???????????????????????????????????????????????????
|
|
|
|
Training a classifier can be time time consuming. To avoid running the training unnecessarily, you can use ShelfMixin to store the classifier. For instance:
|
|
|
|
.. code:: python
|
|
|
|
from senpy.plugins import ShelfMixin, SenpyPlugin
|
|
|
|
class MyPlugin(ShelfMixin, SenpyPlugin):
|
|
def train(self):
|
|
''' Code to train the classifier
|
|
'''
|
|
# Here goes the code
|
|
# ...
|
|
return classifier
|
|
|
|
def activate(self):
|
|
if 'classifier' not in self.sh:
|
|
classifier = self.train()
|
|
self.sh['classifier'] = classifier
|
|
self.classifier = self.sh['classifier']
|
|
|
|
def deactivate(self):
|
|
self.close()
|
|
|
|
You can speficy a 'shelf_file' in your .senpy file. By default the ShelfMixin creates a file based on the plugin name and stores it in that plugin's folder.
|
|
|
|
I want to implement my service as a plugin, How i can do it?
|
|
????????????????????????????????????????????????????????????
|
|
|
|
This example ilustrate how to implement the Sentiment140 service as a plugin in senpy
|
|
|
|
.. code:: python
|
|
|
|
class Sentiment140Plugin(SentimentPlugin):
|
|
def analyse(self, **params):
|
|
lang = params.get("language", "auto")
|
|
res = requests.post("http://www.sentiment140.com/api/bulkClassifyJson",
|
|
json.dumps({"language": lang,
|
|
"data": [{"text": params["input"]}]
|
|
}
|
|
)
|
|
)
|
|
|
|
p = params.get("prefix", None)
|
|
response = Results(prefix=p)
|
|
polarity_value = self.maxPolarityValue*int(res.json()["data"][0]
|
|
["polarity"]) * 0.25
|
|
polarity = "marl:Neutral"
|
|
neutral_value = self.maxPolarityValue / 2.0
|
|
if polarity_value > neutral_value:
|
|
polarity = "marl:Positive"
|
|
elif polarity_value < neutral_value:
|
|
polarity = "marl:Negative"
|
|
|
|
entry = Entry(id="Entry0",
|
|
nif__isString=params["input"])
|
|
sentiment = Sentiment(id="Sentiment0",
|
|
prefix=p,
|
|
marl__hasPolarity=polarity,
|
|
marl__polarityValue=polarity_value)
|
|
sentiment.prov__wasGeneratedBy = self.id
|
|
entry.sentiments = []
|
|
entry.sentiments.append(sentiment)
|
|
entry.language = lang
|
|
response.entries.append(entry)
|
|
return response
|
|
|
|
|
|
Where can I define extra parameters to be introduced in the request to my plugin?
|
|
?????????????????????????????????????????????????????????????????????????????????
|
|
|
|
You can add these parameters in the definition file under the attribute "extra_params" : "{param_name}". The name of the parameter has new attributes-value pairs. The basic attributes are:
|
|
|
|
* aliases: the different names which can be used in the request to use the parameter.
|
|
* required: this option is a boolean and indicates if the parameters is binding in operation plugin.
|
|
* options: the different values of the paremeter.
|
|
* default: the default value of the parameter, this is useful in case the paremeter is required and you want to have a default value.
|
|
|
|
.. code:: python
|
|
|
|
"extra_params": {
|
|
"language": {
|
|
"aliases": ["language", "l"],
|
|
"required": true,
|
|
"options": ["es","en"],
|
|
"default": "es"
|
|
}
|
|
}
|
|
|
|
This example shows how to introduce a parameter associated with language.
|
|
The extraction of this paremeter is used in the analyse method of the Plugin interface.
|
|
|
|
.. code:: python
|
|
|
|
lang = params.get("language")
|
|
|
|
Where can I set up variables for using them in my plugin?
|
|
?????????????????????????????????????????????????????????
|
|
|
|
You can add these variables in the definition file with the extracture of attribute-value pair.
|
|
|
|
Once you have added your variables, the next step is to extract them into the plugin. The plugin's __init__ method has a parameter called `info` where you can extract the values of the variables. This info parameter has the structure of a python dictionary.
|
|
|
|
Can I activate a DEBUG mode for my plugin?
|
|
???????????????????????????????????????????
|
|
|
|
You can activate the DEBUG mode by the command-line tool using the option -d.
|
|
|
|
.. code:: bash
|
|
|
|
python -m senpy -d
|
|
|
|
Where can I find more code examples?
|
|
????????????????????????????????????
|
|
|
|
See: `<http://github.com/gsi-upm/senpy-plugins-community>`_.
|