1
0
mirror of https://github.com/gsi-upm/senpy synced 2024-11-13 04:02:29 +00:00
senpy/emotion-depechemood/depechemood_plugin.py
2019-01-09 19:31:51 +01:00

168 lines
6.2 KiB
Python

#!/usr/local/bin/python
# coding: utf-8
import os
import re
import sys
import string
import numpy as np
import pandas as pd
from six.moves import urllib
from nltk.corpus import stopwords
from senpy import EmotionPlugin, TextBox, models
def ignore(dchars):
deletechars = "".join(dchars)
if sys.version_info[0] >= 3:
tbl = str.maketrans("", "", deletechars)
ignore = lambda s: s.translate(tbl)
else:
def ignore(s):
return string.translate(s, None, deletechars)
return ignore
class DepecheMood(TextBox, EmotionPlugin):
'''Plugin that uses the DepecheMood++ emotion lexicon.'''
author = 'Oscar Araque'
version = '0.1'
def __init__(self, *args, **kwargs):
super(DepecheMood, self).__init__(*args, **kwargs)
self.LEXICON_URL = "https://github.com/marcoguerini/DepecheMood/raw/master/DepecheMood%2B%2B/DepecheMood_english_token_full.tsv"
self.EMOTIONS = ['AFRAID', 'AMUSED', 'ANGRY', 'ANNOYED', 'DONT_CARE', 'HAPPY', 'INSPIRED', 'SAD',]
self._mapping = {
'AFRAID': 'wna:negative-fear',
'AMUSED': 'wna:amusement',
'ANGRY': 'wna:anger',
'ANNOYED': 'wna:annoyance',
'DONT_CARE': 'wna:indifference',
'HAPPY': 'wna:joy',
'INSPIRED': 'wna:awe',
'SAD': 'wna:sadness',
}
self._denoise = ignore(set(string.punctuation)|set('«»'))
self._stop_words = []
self._lex_vocab = None
self._lex = None
def activate(self):
self._lex = self.download_lex()
self._lex_vocab = set(list(self._lex.keys()))
self._stop_words = stopwords.words('english') + ['']
def clean_str(self, string):
string = re.sub(r"[^A-Za-z0-9().,!?\'\`]", " ", string)
string = re.sub(r"[0-9]+", " num ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r"\.", " . ", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " ( ", string)
string = re.sub(r"\)", " ) ", string)
string = re.sub(r"\?", " ? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
def preprocess(self, text):
if text is None:
return None
tokens = self._denoise(self.clean_str(text)).split(' ')
tokens = [tok for tok in tokens if tok not in self._stop_words]
return tokens
def estimate_emotion(self, tokens, emotion):
s = []
for tok in tokens:
s.append(self._lex[tok][emotion])
dividend = np.sum(s) if np.sum(s) > 0 else 0
divisor = len(s) if len(s) > 0 else 1
S = np.sum(s) / divisor
return S
def estimate_all_emotions(self, tokens):
S = {}
intersection = set(tokens) & self._lex_vocab
for emotion in self.EMOTIONS:
s = self.estimate_emotion(intersection, emotion)
emotion_mapped = self._mapping[emotion]
S[emotion_mapped] = s
return S
def download_lex(self, file_path='DepecheMood_english_token_full.tsv', freq_threshold=10):
try:
file_path = self.find_file(file_path)
except IOError:
filename, _ = urllib.request.urlretrieve(self.LEXICON_URL, file_path)
lexicon = pd.read_csv(file_path, sep='\t', index_col=0)
lexicon = lexicon[lexicon['freq'] >= freq_threshold]
lexicon.drop('freq', axis=1, inplace=True)
lexicon = lexicon.T.to_dict()
return lexicon
def output(self, output, entry, **kwargs):
s = models.EmotionSet()
s.prov__wasGeneratedBy = self.id
entry.emotions.append(s)
for label, value in output.items():
e = models.Emotion(onyx__hasEmotionCategory=label,
onyx__hasEmotionIntensity=value)
s.onyx__hasEmotion.append(e)
return entry
def predict_one(self, input, **kwargs):
tokens = self.preprocess(input)
estimation = self.estimate_all_emotions(tokens)
return estimation
test_cases = [
{
'entry': {
'nif:isString': 'My cat is very happy',
},
'expected': {
'emotions': [
{
'@type': 'emotionSet',
'onyx:hasEmotion': [
{'@type': 'emotion', 'onyx:hasEmotionCategory': 'wna:negative-fear',
'onyx:hasEmotionIntensity': 0.05278117640010922, },
{'@type': 'emotion', 'onyx:hasEmotionCategory': 'wna:amusement',
'onyx:hasEmotionIntensity': 0.2114806151413433, },
{'@type': 'emotion', 'onyx:hasEmotionCategory': 'wna:anger',
'onyx:hasEmotionIntensity': 0.05726119426520887, },
{'@type': 'emotion', 'onyx:hasEmotionCategory': 'wna:annoyance',
'onyx:hasEmotionIntensity': 0.12295990731053638, },
{'@type': 'emotion', 'onyx:hasEmotionCategory': 'wna:indifference',
'onyx:hasEmotionIntensity': 0.1860159893608025, },
{'@type': 'emotion', 'onyx:hasEmotionCategory': 'wna:joy',
'onyx:hasEmotionIntensity': 0.12904050973724163, },
{'@type': 'emotion', 'onyx:hasEmotionCategory': 'wna:awe',
'onyx:hasEmotionIntensity': 0.17973650399862967, },
{'@type': 'emotion', 'onyx:hasEmotionCategory': 'wna:sadness',
'onyx:hasEmotionIntensity': 0.060724103786128455, },
]
}
]
}
}
]
if __name__ == '__main__':
from senpy.utils import easy, easy_load, easy_test
# sp, app = easy_load()
# for plug in sp.analysis_plugins:
# plug.test()
easy()