1
0
mirror of https://github.com/gsi-upm/senpy synced 2024-11-22 16:12:29 +00:00
senpy/emotion-wnaffect/emotion-wnaffect.py

184 lines
6.8 KiB
Python

# -*- coding: utf-8 -*-
from __future__ import division
import re
import nltk
import logging
import os
import string
import xml.etree.ElementTree as ET
from nltk.corpus import stopwords
from nltk.corpus import WordNetCorpusReader
from emotion import Emotion as Emo
from pattern.en import parse
from senpy.plugins import EmotionPlugin, SenpyPlugin, ShelfMixin
from senpy.models import Results, EmotionSet, Entry, Emotion
class EmotionTextPlugin(EmotionPlugin, ShelfMixin):
def _load_synsets(self, synsets_path):
"""Returns a dictionary POS tag -> synset offset -> emotion (str -> int -> str)."""
tree = ET.parse(synsets_path)
root = tree.getroot()
pos_map = { "noun": "NN", "adj": "JJ", "verb": "VB", "adv": "RB" }
synsets = {}
for pos in ["noun", "adj", "verb", "adv"]:
tag = pos_map[pos]
synsets[tag] = {}
for elem in root.findall(".//{0}-syn-list//{0}-syn".format(pos, pos)):
offset = int(elem.get("id")[2:])
if not offset: continue
if elem.get("categ"):
synsets[tag][offset] = Emo.emotions[elem.get("categ")] if elem.get("categ") in Emo.emotions else None
elif elem.get("noun-id"):
synsets[tag][offset] = synsets[pos_map["noun"]][int(elem.get("noun-id")[2:])]
return synsets
def _load_emotions(self, hierarchy_path):
"""Loads the hierarchy of emotions from the WordNet-Affect xml."""
tree = ET.parse(hierarchy_path)
root = tree.getroot()
for elem in root.findall("categ"):
name = elem.get("name")
if name == "root":
Emo.emotions["root"] = Emo("root")
else:
Emo.emotions[name] = Emo(name, elem.get("isa"))
def activate(self, *args, **kwargs):
nltk.download('stopwords')
self._stopwords = stopwords.words('english')
#local_path=os.path.dirname(os.path.abspath(__file__))
self._categories = {'anger': ['general-dislike',],
'fear': ['negative-fear',],
'disgust': ['shame',],
'joy': ['gratitude','affective','enthusiasm','love','joy','liking'],
'sadness': ['ingrattitude','daze','humility','compassion','despair','anxiety','sadness']}
self._wnaffect_mappings = {'anger': 'anger',
'fear': 'negative-fear',
'disgust': 'disgust',
'joy': 'joy',
'sadness': 'sadness'}
self._load_emotions(self.hierarchy_path)
if 'total_synsets' not in self.sh:
total_synsets = self._load_synsets(self.synsets_path)
self.sh['total_synsets'] = total_synsets
self._total_synsets = self.sh['total_synsets']
if 'wn16' not in self.sh:
self._wn16_path = self.wn16_path
wn16 = WordNetCorpusReader(os.path.abspath("{0}".format(self._wn16_path)), nltk.data.find(self._wn16_path))
self.sh['wn16'] = wn16
self._wn16 = self.sh['wn16']
def deactivate(self, *args, **kwargs):
self.save()
def _my_preprocessor(self, text):
regHttp = re.compile('(http://)[a-zA-Z0-9]*.[a-zA-Z0-9/]*(.[a-zA-Z0-9]*)?')
regHttps = re.compile('(https://)[a-zA-Z0-9]*.[a-zA-Z0-9/]*(.[a-zA-Z0-9]*)?')
regAt = re.compile('@([a-zA-Z0-9]*[*_/&%#@$]*)*[a-zA-Z0-9]*')
text = re.sub(regHttp, '', text)
text = re.sub(regAt, '', text)
text = re.sub('RT : ', '', text)
text = re.sub(regHttps, '', text)
text = re.sub('[0-9]', '', text)
text = self._delete_punctuation(text)
return text
def _delete_punctuation(self, text):
exclude = set(string.punctuation)
s = ''.join(ch for ch in text if ch not in exclude)
return s
def _extract_ngrams(self, text):
unigrams_lemmas = []
pos_tagged = []
unigrams_words = []
sentences = parse(text,lemmata=True).split()
for sentence in sentences:
for token in sentence:
if token[0].lower() not in self._stopwords:
unigrams_words.append(token[0].lower())
unigrams_lemmas.append(token[4])
pos_tagged.append(token[1])
return unigrams_words,unigrams_lemmas,pos_tagged
def _find_ngrams(self, input_list, n):
return zip(*[input_list[i:] for i in range(n)])
def _clean_pos(self, pos_tagged):
pos_tags={'NN':'NN', 'NNP':'NN','NNP-LOC':'NN', 'NNS':'NN', 'JJ':'JJ', 'JJR':'JJ', 'JJS':'JJ', 'RB':'RB', 'RBR':'RB',
'RBS':'RB', 'VB':'VB', 'VBD':'VB', 'VGB':'VB', 'VBN':'VB', 'VBP':'VB', 'VBZ':'VB'}
for i in range(len(pos_tagged)):
if pos_tagged[i] in pos_tags:
pos_tagged[i]=pos_tags[pos_tagged[i]]
return pos_tagged
def _extract_features(self, text):
feature_set={k:0 for k in self._categories}
ngrams_words,ngrams_lemmas,pos_tagged = self._extract_ngrams(text)
matches=0
pos_tagged=self._clean_pos(pos_tagged)
tag_wn={'NN':self._wn16.NOUN,'JJ':self._wn16.ADJ,'VB':self._wn16.VERB,'RB':self._wn16.ADV}
for i in range(len(pos_tagged)):
if pos_tagged[i] in tag_wn:
synsets = self._wn16.synsets(ngrams_words[i], tag_wn[pos_tagged[i]])
if synsets:
offset = synsets[0].offset()
if offset in self._total_synsets[pos_tagged[i]]:
if self._total_synsets[pos_tagged[i]][offset] is None:
continue
else:
emotion = self._total_synsets[pos_tagged[i]][offset].get_level(5).name
matches+=1
for i in self._categories:
if emotion in self._categories[i]:
feature_set[i]+=1
if matches == 0:
matches=1
for i in feature_set:
feature_set[i] = (feature_set[i]/matches)*100
return feature_set
def analyse_entry(self, entry, params):
text_input = entry.get("text", None)
text=self._my_preprocessor(text_input)
feature_text=self._extract_features(text)
response = Results()
emotionSet = EmotionSet(id="Emotions0")
emotions = emotionSet.onyx__hasEmotion
for i in feature_text:
emotions.append(Emotion(onyx__hasEmotionCategory=self._wnaffect_mappings[i],
onyx__hasEmotionIntensity=feature_text[i]))
entry.emotions = [emotionSet]
yield entry