1
0
mirror of https://github.com/gsi-upm/senpy synced 2024-11-22 08:12:27 +00:00
senpy/sentiment-basic/sentiment-basic.py
2018-06-20 12:29:01 +02:00

183 lines
6.3 KiB
Python

#!/usr/bin/python
# -*- coding: utf-8 -*-
import os
import string
import nltk
import pickle
from sentiwn import SentiWordNet
from nltk.corpus import wordnet as wn
from textblob import TextBlob
from scipy.interpolate import interp1d
from os import path
from senpy.plugins import SentimentPlugin, SenpyPlugin
from senpy.models import Results, Entry, Sentiment
class SentimentBasic(SentimentPlugin):
'''
Sentiment classifier using rule-based classification for Spanish. Based on english to spanish translation and SentiWordNet sentiment knowledge. This is a demo plugin that uses only some features from the TASS 2015 classifier. To use the entirely functional classifier you can use the service in: http://senpy.cluster.gsi.dit.upm.es.
'''
name = "sentiment-basic"
author = "github.com/nachtkatze"
version = "0.1.1"
extra_params = {
"language": {
"aliases": ["language", "l"],
"required": True,
"options": ["en","es", "it", "fr", "auto"],
"default": "auto"
}
}
sentiword_path = "SentiWordNet_3.0.txt"
pos_path = "unigram_spanish.pickle"
maxPolarityValue = 1
minPolarityValue = -1
nltk_resources = ['punkt','wordnet', 'omw']
def _load_swn(self):
self.swn_path = self.find_file(self.sentiword_path)
swn = SentiWordNet(self.swn_path)
return swn
def _load_pos_tagger(self):
self.pos_path = self.find_file(self.pos_path)
with open(self.pos_path, 'r') as f:
tagger = pickle.load(f)
return tagger
def activate(self, *args, **kwargs):
self._swn = self._load_swn()
self._pos_tagger = self._load_pos_tagger()
def _remove_punctuation(self, tokens):
return [t for t in tokens if t not in string.punctuation]
def _tokenize(self, text):
data = {}
sentences = nltk.sent_tokenize(text)
for i, sentence in enumerate(sentences):
sentence_ = {}
words = nltk.word_tokenize(sentence)
sentence_['sentence'] = sentence
tokens_ = [w.lower() for w in words]
sentence_['tokens'] = self._remove_punctuation(tokens_)
data[i] = sentence_
return data
def _pos(self, tokens):
for i in tokens:
tokens[i]['tokens'] = self._pos_tagger.tag(tokens[i]['tokens'])
return tokens
def _compare_synsets(self, synsets, tokens, i):
for synset in synsets:
for word in tokens[i]['lemmas']:
for lemma in tokens[i]['lemmas'][word]:
synset_ = lemma.synset()
if synset == synset_:
return synset
return None
def analyse_entry(self, entry, params):
language = params.get("language")
text = entry.text
tokens = self._tokenize(text)
tokens = self._pos(tokens)
sufixes = {'es':'spa','en':'eng','it':'ita','fr':'fra'}
for i in tokens:
tokens[i]['lemmas'] = {}
for w in tokens[i]['tokens']:
lemmas = wn.lemmas(w[0], lang=sufixes[language])
if len(lemmas) == 0:
continue
tokens[i]['lemmas'][w[0]] = lemmas
if language == "en":
trans = TextBlob(unicode(text))
else:
trans = TextBlob(unicode(text)).translate(from_lang=language,to='en')
useful_synsets = {}
for s_i, t_s in enumerate(trans.sentences):
useful_synsets[s_i] = {}
for w_i, t_w in enumerate(trans.sentences[s_i].words):
synsets = wn.synsets(trans.sentences[s_i].words[w_i])
if len(synsets) == 0:
continue
eq_synset = self._compare_synsets(synsets, tokens, s_i)
useful_synsets[s_i][t_w] = eq_synset
scores = {}
for i in tokens:
scores[i] = {}
if useful_synsets != None:
for word in useful_synsets[i]:
if useful_synsets[i][word] is None:
continue
temp_scores = self._swn.get_score(useful_synsets[i][word].name().split('.')[0].replace(' ',' '))
for score in temp_scores:
if score['synset'] == useful_synsets[i][word]:
t_score = score['pos'] - score['neg']
f_score = 'neu'
if t_score > 0:
f_score = 'pos'
elif t_score < 0:
f_score = 'neg'
score['score'] = f_score
scores[i][word] = score
break
p = params.get("prefix", None)
for i in scores:
n_pos = 0.0
n_neg = 0.0
for w in scores[i]:
if scores[i][w]['score'] == 'pos':
n_pos += 1.0
elif scores[i][w]['score'] == 'neg':
n_neg += 1.0
inter = interp1d([-1.0, 1.0], [0.0, 1.0])
try:
g_score = (n_pos - n_neg) / (n_pos + n_neg)
g_score = float(inter(g_score))
except:
if n_pos == 0 and n_neg == 0:
g_score = 0.5
if g_score >= 0.5:
polarity = 'marl:Positive'
polarity_value = 1
elif g_score < 0.5:
polarity = 'marl:Negative'
polarity_value = -1
else:
polarity = 'marl:Neutral'
polarity_value = 0
opinion = Sentiment(id="Opinion0"+'_'+str(i),
marl__hasPolarity=polarity,
marl__polarityValue=polarity_value)
opinion.prov(self)
entry.sentiments.append(opinion)
yield entry
test_cases = [
{
'input': u'Odio ir al cine',
'params': {'language': 'es'},
'polarity': 'marl:Negative'
},
{
'input': u'El cielo está nublado',
'params': {'language': 'es'},
'polarity': 'marl:Positive'
},
{
'input': u'Esta tarta está muy buena',
'params': {'language': 'es'},
'polarity': 'marl:Negative'
}
]