#!/bin/env python import os import pickle import shutil import tempfile from unittest import TestCase from senpy.models import Results, Entry, EmotionSet, Emotion, Plugins from senpy import plugins from senpy.plugins.conversion.emotion.centroids import CentroidConversion import pandas as pd class ShelfDummyPlugin(plugins.SentimentPlugin, plugins.ShelfMixin): '''Dummy plugin for tests.''' name = 'Shelf' version = 0 author = 'the senpy community' def activate(self, *args, **kwargs): if 'counter' not in self.sh: self.sh['counter'] = 0 self.save() def deactivate(self, *args, **kwargs): self.save() def analyse(self, *args, **kwargs): self.sh['counter'] = self.sh['counter'] + 1 e = Entry() e.nif__isString = self.sh['counter'] r = Results() r.entries.append(e) return r class PluginsTest(TestCase): def tearDown(self): if os.path.exists(self.shelf_dir): shutil.rmtree(self.shelf_dir) if os.path.isfile(self.shelf_file): os.remove(self.shelf_file) def setUp(self): self.shelf_dir = tempfile.mkdtemp() self.shelf_file = os.path.join(self.shelf_dir, "shelf") def test_serialize(self): '''A plugin should be serializable and de-serializable''' dummy = ShelfDummyPlugin() dummy.serialize() def test_jsonld(self): '''A plugin should be serializable and de-serializable''' dummy = ShelfDummyPlugin() dummy.jsonld() def test_shelf_file(self): a = ShelfDummyPlugin( info={'name': 'default_shelve_file', 'description': 'Dummy plugin for tests', 'version': 'test'}) a.activate() assert os.path.isfile(a.shelf_file) os.remove(a.shelf_file) def test_plugin_filter(self): ps = Plugins() for i in (plugins.SentimentPlugin, plugins.EmotionPlugin, plugins.AnalysisPlugin): p = i(name='Plugin_{}'.format(i.__name__), description='TEST', version=0, author='NOBODY') ps.plugins.append(p) assert len(ps.plugins) == 3 cases = [('AnalysisPlugin', 3), ('SentimentPlugin', 1), ('EmotionPlugin', 1)] for name, num in cases: res = list(plugins.pfilter(ps.plugins, plugin_type=name)) assert len(res) == num def test_shelf(self): ''' A shelf is created and the value is stored ''' newfile = self.shelf_file + "new" a = ShelfDummyPlugin(info={ 'name': 'shelve', 'description': 'Shelf plugin for tests', 'version': 'test', 'shelf_file': newfile }) assert a.sh == {} a.activate() assert a.sh == {'counter': 0} assert a.shelf_file == newfile a.sh['a'] = 'fromA' assert a.sh['a'] == 'fromA' a.save() sh = pickle.load(open(newfile, 'rb')) assert sh['a'] == 'fromA' def test_dummy_shelf(self): with open(self.shelf_file, 'wb') as f: pickle.dump({'counter': 99}, f) a = ShelfDummyPlugin(info={ 'name': 'DummyShelf', 'description': 'Dummy plugin for tests', 'shelf_file': self.shelf_file, 'version': 'test' }) a.activate() assert a.shelf_file == self.shelf_file res1 = a.analyse(input=1) assert res1.entries[0].nif__isString == 100 a.deactivate() del a with open(self.shelf_file, 'rb') as f: sh = pickle.load(f) assert sh['counter'] == 100 def test_corrupt_shelf(self): ''' Reusing the values of a previous shelf ''' emptyfile = os.path.join(self.shelf_dir, "emptyfile") invalidfile = os.path.join(self.shelf_dir, "invalid_file") with open(emptyfile, 'w+b'), open(invalidfile, 'w+b') as inf: inf.write(b'ohno') files = {emptyfile: ['empty file', (EOFError, IndexError)], invalidfile: ['invalid file', (pickle.UnpicklingError, IndexError)]} for fn in files: with open(fn, 'rb') as f: msg, error = files[fn] a = ShelfDummyPlugin(info={ 'name': 'test_corrupt_shelf_{}'.format(msg), 'description': 'Dummy plugin for tests', 'version': 'test', 'shelf_file': f.name }) assert os.path.isfile(a.shelf_file) print('Shelf file: %s' % a.shelf_file) with self.assertRaises(error): a.sh['a'] = 'fromA' a.save() del a._sh assert os.path.isfile(a.shelf_file) a.force_shelf = True a.sh['a'] = 'fromA' a.save() b = pickle.load(f) assert b['a'] == 'fromA' def test_reuse_shelf(self): ''' Reusing the values of a previous shelf ''' a = ShelfDummyPlugin(info={ 'name': 'shelve', 'description': 'Dummy plugin for tests', 'version': 'test', 'shelf_file': self.shelf_file }) a.activate() print('Shelf file: %s' % a.shelf_file) a.sh['a'] = 'fromA' a.save() b = ShelfDummyPlugin(info={ 'name': 'shelve', 'description': 'Dummy plugin for tests', 'version': 'test', 'shelf_file': self.shelf_file }) b.activate() assert b.sh['a'] == 'fromA' b.sh['a'] = 'fromB' assert b.sh['a'] == 'fromB' def test_extra_params(self): ''' Should be able to set extra parameters''' a = ShelfDummyPlugin(info={ 'name': 'shelve', 'description': 'Dummy shelf plugin for tests', 'version': 'test', 'shelf_file': self.shelf_file, 'extra_params': { 'example': { 'aliases': ['example', 'ex'], 'required': True, 'default': 'nonsense' } } }) assert 'example' in a.extra_params def test_box(self): class MyBox(plugins.Box): ''' Vague description''' author = 'me' version = 0 def input(self, entry, **kwargs): return entry.text def predict_one(self, input): return 'SIGN' in input def output(self, output, entry, **kwargs): if output: entry.myAnnotation = 'DETECTED' return entry test_cases = [ { 'input': "nothing here", 'expected': {'myAnnotation': 'DETECTED'}, 'should_fail': True }, { 'input': "SIGN", 'expected': {'myAnnotation': 'DETECTED'} }] MyBox().test() def test_sentimentbox(self): class SentimentBox(plugins.MappingMixin, plugins.SentimentBox): ''' Vague description''' author = 'me' version = 0 mappings = {'happy': 'marl:Positive', 'sad': 'marl:Negative'} def predict_one(self, input, **kwargs): return 'happy' if ':)' in input else 'sad' test_cases = [ { 'input': 'a happy face :)', 'polarity': 'marl:Positive' }, { 'input': "Nothing", 'polarity': 'marl:Negative' }] SentimentBox().test() def test_conversion_centroids(self): info = { "name": "CentroidTest", "description": "Centroid test", "version": 0, "centroids": { "c1": {"V1": 0.5, "V2": 0.5}, "c2": {"V1": -0.5, "V2": 0.5}, "c3": {"V1": -0.5, "V2": -0.5}, "c4": {"V1": 0.5, "V2": -0.5}}, "aliases": { "V1": "X-dimension", "V2": "Y-dimension" }, "centroids_direction": ["emoml:big6", "emoml:fsre-dimensions"] } c = CentroidConversion(info) print(c.serialize()) es1 = EmotionSet() e1 = Emotion() e1.onyx__hasEmotionCategory = "c1" es1.onyx__hasEmotion.append(e1) res = c._forward_conversion(es1) assert res["X-dimension"] == 0.5 assert res["Y-dimension"] == 0.5 print(res) e2 = Emotion() e2.onyx__hasEmotionCategory = "c2" es1.onyx__hasEmotion.append(e2) res = c._forward_conversion(es1) assert res["X-dimension"] == 0 assert res["Y-dimension"] == 1 print(res) e = Emotion() e["X-dimension"] = -0.2 e["Y-dimension"] = -0.3 res = c._backwards_conversion(e) assert res["onyx:hasEmotionCategory"] == "c3" print(res) e = Emotion() e["X-dimension"] = -0.2 e["Y-dimension"] = 0.3 res = c._backwards_conversion(e) assert res["onyx:hasEmotionCategory"] == "c2" def test_evaluation(self): testdata = [] for i in range(50): testdata.append(["good", 1]) for i in range(50): testdata.append(["bad", 0]) dataset = pd.DataFrame(testdata, columns=['text', 'polarity']) class DummyPlugin(plugins.TextBox): description = 'Plugin to test evaluation' version = 0 def predict_one(self, input): return 0 class SmartPlugin(plugins.TextBox): description = 'Plugin to test evaluation' version = 0 def predict_one(self, input): if input == 'good': return 1 return 0 dpipe = DummyPlugin() results = plugins.evaluate(datasets={'testdata': dataset}, plugins=[dpipe], flatten=True) dumb_metrics = results[0].metrics[0] assert abs(dumb_metrics['accuracy'] - 0.5) < 0.01 spipe = SmartPlugin() results = plugins.evaluate(datasets={'testdata': dataset}, plugins=[spipe], flatten=True) smart_metrics = results[0].metrics[0] assert abs(smart_metrics['accuracy'] - 1) < 0.01 def make_mini_test(fpath): def mini_test(self): for plugin in plugins.from_path(fpath, install=True): plugin.test() return mini_test def _add_tests(): root = os.path.join(os.path.dirname(__file__), '..') print(root) for fpath in plugins.find_plugins([root, ]): pass t_method = make_mini_test(fpath) t_method.__name__ = 'test_plugin_{}'.format(fpath) setattr(PluginsTest, t_method.__name__, t_method) del t_method _add_tests()