1
0
mirror of https://github.com/gsi-upm/senpy synced 2025-12-28 05:48:15 +00:00

Converted Ekman2VAD to centroids

* Changed the way modules are imported -> we can now use dotted
  notation (e.g. senpy.plugins.conversion.centroids)
* Refactored ekman2vad's plugin -> generic centroids
* Added some basic tests
This commit is contained in:
J. Fernando Sánchez
2017-02-28 04:28:54 +01:00
parent 453b9f3257
commit d8b59d06a4
7 changed files with 72 additions and 69 deletions

103
senpy/plugins/__init__.py Normal file
View File

@@ -0,0 +1,103 @@
from future import standard_library
standard_library.install_aliases()
import inspect
import os.path
import pickle
import logging
import tempfile
import copy
from .. import models
logger = logging.getLogger(__name__)
class SenpyPlugin(models.Plugin):
def __init__(self, info=None):
"""
Provides a canonical name for plugins and serves as base for other
kinds of plugins.
"""
if not info:
raise models.Error(message=("You need to provide configuration"
"information for the plugin."))
logger.debug("Initialising {}".format(info))
id = 'plugins/{}_{}'.format(info['name'], info['version'])
super(SenpyPlugin, self).__init__(id=id, **info)
self.is_activated = False
def get_folder(self):
return os.path.dirname(inspect.getfile(self.__class__))
def analyse(self, *args, **kwargs):
raise NotImplemented(
'Your method should implement either analyse or analyse_entry')
def analyse_entry(self, entry, parameters):
""" An implemented plugin should override this method.
This base method is here to adapt old style plugins which only
implement the *analyse* function.
Note that this method may yield an annotated entry or a list of
entries (e.g. in a tokenizer)
"""
text = entry['text']
params = copy.copy(parameters)
params['input'] = text
results = self.analyse(**params)
for i in results.entries:
yield i
def activate(self):
pass
def deactivate(self):
pass
class SentimentPlugin(models.SentimentPlugin, SenpyPlugin):
def __init__(self, info, *args, **kwargs):
super(SentimentPlugin, self).__init__(info, *args, **kwargs)
self.minPolarityValue = float(info.get("minPolarityValue", 0))
self.maxPolarityValue = float(info.get("maxPolarityValue", 1))
class EmotionPlugin(models.EmotionPlugin, SenpyPlugin):
def __init__(self, info, *args, **kwargs):
super(EmotionPlugin, self).__init__(info, *args, **kwargs)
self.minEmotionValue = float(info.get("minEmotionValue", -1))
self.maxEmotionValue = float(info.get("maxEmotionValue", 1))
class EmotionConversionPlugin(models.EmotionConversionPlugin, SenpyPlugin):
def __init__(self, info, *args, **kwargs):
super(EmotionConversionPlugin, self).__init__(info, *args, **kwargs)
class ShelfMixin(object):
@property
def sh(self):
if not hasattr(self, '_sh') or self._sh is None:
self.__dict__['_sh'] = {}
if os.path.isfile(self.shelf_file):
self.__dict__['_sh'] = pickle.load(open(self.shelf_file, 'rb'))
return self._sh
@sh.deleter
def sh(self):
if os.path.isfile(self.shelf_file):
os.remove(self.shelf_file)
del self.__dict__['_sh']
self.save()
@property
def shelf_file(self):
if 'shelf_file' not in self or not self['shelf_file']:
self.shelf_file = os.path.join(tempfile.gettempdir(),
self.name + '.p')
return self['shelf_file']
def save(self):
logger.debug('saving pickle')
if hasattr(self, '_sh') and self._sh is not None:
with open(self.shelf_file, 'wb') as f:
pickle.dump(self._sh, f)

View File

View File

@@ -0,0 +1,52 @@
from senpy.plugins import EmotionConversionPlugin
from senpy.models import EmotionSet, Emotion, Error
import logging
logger = logging.getLogger(__name__)
class CentroidConversion(EmotionConversionPlugin):
def _forward_conversion(self, original):
"""Sum the VAD value of all categories found."""
res = Emotion()
for e in original.onyx__hasEmotion:
category = e.onyx__hasEmotionCategory
if category in self.centroids:
for dim, value in self.centroids[category].iteritems():
try:
res[dim] += value
except Exception:
res[dim] = value
return res
def _backwards_conversion(self, original):
"""Find the closest category"""
dimensions = list(self.centroids.values())[0]
def distance(e1, e2):
return sum((e1[k] - e2.get(self.aliases[k], 0)) for k in dimensions)
emotion = ''
mindistance = 10000000000000000000000.0
for state in self.centroids:
d = distance(self.centroids[state], original)
if d < mindistance:
mindistance = d
emotion = state
result = Emotion(onyx__hasEmotionCategory=emotion)
return result
def convert(self, emotionSet, fromModel, toModel, params):
cf, ct = self.centroids_direction
logger.debug('{}\n{}\n{}\n{}'.format(emotionSet, fromModel, toModel, params))
e = EmotionSet()
if fromModel == cf:
e.onyx__hasEmotion.append(self._forward_conversion(emotionSet))
elif fromModel == ct:
for i in emotionSet.onyx__hasEmotion:
e.onyx__hasEmotion.append(self._backwards_conversion(i))
else:
raise Error('EMOTION MODEL NOT KNOWN')
yield e

View File

@@ -1,58 +0,0 @@
from senpy.plugins import EmotionConversionPlugin
from senpy.models import EmotionSet, Emotion, Error
import logging
logger = logging.getLogger(__name__)
import math
class WNA2VAD(EmotionConversionPlugin):
def _ekman_to_vad(self, ekmanSet):
"""Sum the VAD value of all categories found."""
valence = 0
arousal = 0
dominance = 0
for e in ekmanSet.onyx__hasEmotion:
category = e.onyx__hasEmotionCategory
centroid = self.centroids[category]
valence += centroid['V']
arousal += centroid['A']
dominance += centroid['D']
e = Emotion({'emoml:valence': valence,
'emoml:arousal': arousal,
'emoml:potency': dominance})
return e
def _vad_to_ekman(self, VADEmotion):
"""Find the closest category"""
V = VADEmotion['emoml:valence']
A = VADEmotion['emoml:arousal']
D = VADEmotion['emoml:potency']
emotion = ''
value = 10000000000000000000000.0
for state in self.centroids:
valence = V - self.centroids[state]['V']
arousal = A - self.centroids[state]['A']
dominance = D - self.centroids[state]['D']
new_value = math.sqrt((valence**2) +
(arousal**2) +
(dominance**2))
if new_value < value:
value = new_value
emotion = state
result = Emotion(onyx__hasEmotionCategory=emotion)
return result
def convert(self, emotionSet, fromModel, toModel, params):
logger.debug('{}\n{}\n{}\n{}'.format(emotionSet, fromModel, toModel, params))
e = EmotionSet()
if fromModel == 'emoml:big6':
e.onyx__hasEmotion.append(self._ekman_to_vad(emotionSet))
elif fromModel == 'emoml:fsre-dimensions':
for i in emotionSet.onyx__hasEmotion:
e.onyx__hasEmotion.append(self._vad_to_ekman(i))
else:
raise Error('EMOTION MODEL NOT KNOWN')
yield e

View File

@@ -1,6 +1,6 @@
---
name: Ekman2VAD
module: ekman2vad
module: senpy.plugins.conversion.centroids
description: Plugin to convert emotion sets from Ekman to VAD
version: 0.1
onyx:doesConversion:
@@ -29,6 +29,9 @@ centroids:
A: 5.21
D: 2.82
V: 2.21
centroids_direction:
- emoml:big6
- emoml:fsre-dimensions
aliases:
A: emoml:arousal
V: emoml:valence