mirror of
https://github.com/gsi-upm/senpy
synced 2025-12-28 05:48:15 +00:00
Converted Ekman2VAD to centroids
* Changed the way modules are imported -> we can now use dotted notation (e.g. senpy.plugins.conversion.centroids) * Refactored ekman2vad's plugin -> generic centroids * Added some basic tests
This commit is contained in:
103
senpy/plugins/__init__.py
Normal file
103
senpy/plugins/__init__.py
Normal file
@@ -0,0 +1,103 @@
|
||||
from future import standard_library
|
||||
standard_library.install_aliases()
|
||||
|
||||
import inspect
|
||||
import os.path
|
||||
import pickle
|
||||
import logging
|
||||
import tempfile
|
||||
import copy
|
||||
from .. import models
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SenpyPlugin(models.Plugin):
|
||||
def __init__(self, info=None):
|
||||
"""
|
||||
Provides a canonical name for plugins and serves as base for other
|
||||
kinds of plugins.
|
||||
"""
|
||||
if not info:
|
||||
raise models.Error(message=("You need to provide configuration"
|
||||
"information for the plugin."))
|
||||
logger.debug("Initialising {}".format(info))
|
||||
id = 'plugins/{}_{}'.format(info['name'], info['version'])
|
||||
super(SenpyPlugin, self).__init__(id=id, **info)
|
||||
self.is_activated = False
|
||||
|
||||
def get_folder(self):
|
||||
return os.path.dirname(inspect.getfile(self.__class__))
|
||||
|
||||
def analyse(self, *args, **kwargs):
|
||||
raise NotImplemented(
|
||||
'Your method should implement either analyse or analyse_entry')
|
||||
|
||||
def analyse_entry(self, entry, parameters):
|
||||
""" An implemented plugin should override this method.
|
||||
This base method is here to adapt old style plugins which only
|
||||
implement the *analyse* function.
|
||||
Note that this method may yield an annotated entry or a list of
|
||||
entries (e.g. in a tokenizer)
|
||||
"""
|
||||
text = entry['text']
|
||||
params = copy.copy(parameters)
|
||||
params['input'] = text
|
||||
results = self.analyse(**params)
|
||||
for i in results.entries:
|
||||
yield i
|
||||
|
||||
def activate(self):
|
||||
pass
|
||||
|
||||
def deactivate(self):
|
||||
pass
|
||||
|
||||
|
||||
class SentimentPlugin(models.SentimentPlugin, SenpyPlugin):
|
||||
def __init__(self, info, *args, **kwargs):
|
||||
super(SentimentPlugin, self).__init__(info, *args, **kwargs)
|
||||
self.minPolarityValue = float(info.get("minPolarityValue", 0))
|
||||
self.maxPolarityValue = float(info.get("maxPolarityValue", 1))
|
||||
|
||||
|
||||
class EmotionPlugin(models.EmotionPlugin, SenpyPlugin):
|
||||
def __init__(self, info, *args, **kwargs):
|
||||
super(EmotionPlugin, self).__init__(info, *args, **kwargs)
|
||||
self.minEmotionValue = float(info.get("minEmotionValue", -1))
|
||||
self.maxEmotionValue = float(info.get("maxEmotionValue", 1))
|
||||
|
||||
|
||||
class EmotionConversionPlugin(models.EmotionConversionPlugin, SenpyPlugin):
|
||||
def __init__(self, info, *args, **kwargs):
|
||||
super(EmotionConversionPlugin, self).__init__(info, *args, **kwargs)
|
||||
|
||||
|
||||
class ShelfMixin(object):
|
||||
@property
|
||||
def sh(self):
|
||||
if not hasattr(self, '_sh') or self._sh is None:
|
||||
self.__dict__['_sh'] = {}
|
||||
if os.path.isfile(self.shelf_file):
|
||||
self.__dict__['_sh'] = pickle.load(open(self.shelf_file, 'rb'))
|
||||
return self._sh
|
||||
|
||||
@sh.deleter
|
||||
def sh(self):
|
||||
if os.path.isfile(self.shelf_file):
|
||||
os.remove(self.shelf_file)
|
||||
del self.__dict__['_sh']
|
||||
self.save()
|
||||
|
||||
@property
|
||||
def shelf_file(self):
|
||||
if 'shelf_file' not in self or not self['shelf_file']:
|
||||
self.shelf_file = os.path.join(tempfile.gettempdir(),
|
||||
self.name + '.p')
|
||||
return self['shelf_file']
|
||||
|
||||
def save(self):
|
||||
logger.debug('saving pickle')
|
||||
if hasattr(self, '_sh') and self._sh is not None:
|
||||
with open(self.shelf_file, 'wb') as f:
|
||||
pickle.dump(self._sh, f)
|
||||
0
senpy/plugins/conversion/__init__.py
Normal file
0
senpy/plugins/conversion/__init__.py
Normal file
52
senpy/plugins/conversion/centroids.py
Normal file
52
senpy/plugins/conversion/centroids.py
Normal file
@@ -0,0 +1,52 @@
|
||||
from senpy.plugins import EmotionConversionPlugin
|
||||
from senpy.models import EmotionSet, Emotion, Error
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CentroidConversion(EmotionConversionPlugin):
|
||||
|
||||
def _forward_conversion(self, original):
|
||||
"""Sum the VAD value of all categories found."""
|
||||
res = Emotion()
|
||||
for e in original.onyx__hasEmotion:
|
||||
category = e.onyx__hasEmotionCategory
|
||||
if category in self.centroids:
|
||||
for dim, value in self.centroids[category].iteritems():
|
||||
try:
|
||||
res[dim] += value
|
||||
except Exception:
|
||||
res[dim] = value
|
||||
return res
|
||||
|
||||
def _backwards_conversion(self, original):
|
||||
"""Find the closest category"""
|
||||
dimensions = list(self.centroids.values())[0]
|
||||
|
||||
def distance(e1, e2):
|
||||
return sum((e1[k] - e2.get(self.aliases[k], 0)) for k in dimensions)
|
||||
|
||||
emotion = ''
|
||||
mindistance = 10000000000000000000000.0
|
||||
for state in self.centroids:
|
||||
d = distance(self.centroids[state], original)
|
||||
if d < mindistance:
|
||||
mindistance = d
|
||||
emotion = state
|
||||
result = Emotion(onyx__hasEmotionCategory=emotion)
|
||||
return result
|
||||
|
||||
def convert(self, emotionSet, fromModel, toModel, params):
|
||||
|
||||
cf, ct = self.centroids_direction
|
||||
logger.debug('{}\n{}\n{}\n{}'.format(emotionSet, fromModel, toModel, params))
|
||||
e = EmotionSet()
|
||||
if fromModel == cf:
|
||||
e.onyx__hasEmotion.append(self._forward_conversion(emotionSet))
|
||||
elif fromModel == ct:
|
||||
for i in emotionSet.onyx__hasEmotion:
|
||||
e.onyx__hasEmotion.append(self._backwards_conversion(i))
|
||||
else:
|
||||
raise Error('EMOTION MODEL NOT KNOWN')
|
||||
yield e
|
||||
@@ -1,58 +0,0 @@
|
||||
from senpy.plugins import EmotionConversionPlugin
|
||||
from senpy.models import EmotionSet, Emotion, Error
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import math
|
||||
|
||||
|
||||
class WNA2VAD(EmotionConversionPlugin):
|
||||
|
||||
def _ekman_to_vad(self, ekmanSet):
|
||||
"""Sum the VAD value of all categories found."""
|
||||
valence = 0
|
||||
arousal = 0
|
||||
dominance = 0
|
||||
for e in ekmanSet.onyx__hasEmotion:
|
||||
category = e.onyx__hasEmotionCategory
|
||||
centroid = self.centroids[category]
|
||||
valence += centroid['V']
|
||||
arousal += centroid['A']
|
||||
dominance += centroid['D']
|
||||
e = Emotion({'emoml:valence': valence,
|
||||
'emoml:arousal': arousal,
|
||||
'emoml:potency': dominance})
|
||||
return e
|
||||
|
||||
def _vad_to_ekman(self, VADEmotion):
|
||||
"""Find the closest category"""
|
||||
V = VADEmotion['emoml:valence']
|
||||
A = VADEmotion['emoml:arousal']
|
||||
D = VADEmotion['emoml:potency']
|
||||
emotion = ''
|
||||
value = 10000000000000000000000.0
|
||||
for state in self.centroids:
|
||||
valence = V - self.centroids[state]['V']
|
||||
arousal = A - self.centroids[state]['A']
|
||||
dominance = D - self.centroids[state]['D']
|
||||
new_value = math.sqrt((valence**2) +
|
||||
(arousal**2) +
|
||||
(dominance**2))
|
||||
if new_value < value:
|
||||
value = new_value
|
||||
emotion = state
|
||||
result = Emotion(onyx__hasEmotionCategory=emotion)
|
||||
return result
|
||||
|
||||
def convert(self, emotionSet, fromModel, toModel, params):
|
||||
logger.debug('{}\n{}\n{}\n{}'.format(emotionSet, fromModel, toModel, params))
|
||||
e = EmotionSet()
|
||||
if fromModel == 'emoml:big6':
|
||||
e.onyx__hasEmotion.append(self._ekman_to_vad(emotionSet))
|
||||
elif fromModel == 'emoml:fsre-dimensions':
|
||||
for i in emotionSet.onyx__hasEmotion:
|
||||
e.onyx__hasEmotion.append(self._vad_to_ekman(i))
|
||||
else:
|
||||
raise Error('EMOTION MODEL NOT KNOWN')
|
||||
yield e
|
||||
@@ -1,6 +1,6 @@
|
||||
---
|
||||
name: Ekman2VAD
|
||||
module: ekman2vad
|
||||
module: senpy.plugins.conversion.centroids
|
||||
description: Plugin to convert emotion sets from Ekman to VAD
|
||||
version: 0.1
|
||||
onyx:doesConversion:
|
||||
@@ -29,6 +29,9 @@ centroids:
|
||||
A: 5.21
|
||||
D: 2.82
|
||||
V: 2.21
|
||||
centroids_direction:
|
||||
- emoml:big6
|
||||
- emoml:fsre-dimensions
|
||||
aliases:
|
||||
A: emoml:arousal
|
||||
V: emoml:valence
|
||||
|
||||
Reference in New Issue
Block a user