1
0
mirror of https://github.com/gsi-upm/senpy synced 2024-10-31 23:41:41 +00:00

Connecting the Plugin to the evaluation module of GSITK

This commit is contained in:
NahcoCP 2018-01-22 11:15:04 +01:00
parent 4af692091a
commit d6f4cc2dd2

View File

@ -22,6 +22,9 @@ import threading
from .. import models, utils from .. import models, utils
from .. import api from .. import api
from gsitk.evaluation.evaluation import Evaluation as Eval
from sklearn.pipeline import Pipeline
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -320,6 +323,48 @@ class EmotionBox(TextBox, EmotionPlugin):
return entry return entry
class EvaluationBox():
'''
A box plugin where it is implemented the evaluation. It is necessary to have a pipeline.
'''
def score(self, datasets):
pipelines = [self._pipeline]
ev = Eval(tuples = None,
datasets = datasets,
pipelines = pipelines)
ev.evaluate()
results = ev.results
evaluations = self._evaluations_toJSONLD(results)
return evaluations
def _evaluations_toJSONLD(self, results):
'''
Map the evaluation results to a JSONLD scheme
'''
evaluations = list()
metric_names = ['accuracy', 'precision_macro', 'recall_macro', 'f1_macro', 'f1_weighted', 'f1_micro', 'f1_macro']
for index, row in results.iterrows():
evaluation = models.Evaluation()
if row['CV'] == False:
evaluation['@type'] = ['StaticCV', 'Evaluation']
evaluation.evaluatesOn = row['Dataset']
evaluation.evaluates = row['Model']
i = 0
for name in metric_names:
metric = models.Metric()
metric['@id'] = 'Metric' + str(i)
metric['@type'] = name.capitalize()
metric.value = row[name]
evaluation.metrics.append(metric)
i+=1
evaluations.append(evaluation)
return evaluations
class MappingMixin(object): class MappingMixin(object):
@property @property