mirror of
https://github.com/gsi-upm/senpy
synced 2025-10-24 04:08:19 +00:00
Better centroid conversion
Also added **simple** tests for backward and forward conversion. In future versions we should add thorough tests. Should close gsi-upm/senpy#31
This commit is contained in:
102
senpy/plugins/conversion/emotion/centroids.py
Normal file
102
senpy/plugins/conversion/emotion/centroids.py
Normal file
@@ -0,0 +1,102 @@
|
||||
from senpy.plugins import EmotionConversionPlugin
|
||||
from senpy.models import EmotionSet, Emotion, Error
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CentroidConversion(EmotionConversionPlugin):
|
||||
def __init__(self, info):
|
||||
if 'centroids' not in info:
|
||||
raise Error('Centroid conversion plugins should provide '
|
||||
'the centroids in their senpy file')
|
||||
if 'onyx:doesConversion' not in info:
|
||||
if 'centroids_direction' not in info:
|
||||
raise Error('Please, provide centroids direction')
|
||||
|
||||
cf, ct = info['centroids_direction']
|
||||
info['onyx:doesConversion'] = [{
|
||||
'onyx:conversionFrom': cf,
|
||||
'onyx:conversionTo': ct
|
||||
}, {
|
||||
'onyx:conversionFrom': ct,
|
||||
'onyx:conversionTo': cf
|
||||
}]
|
||||
|
||||
if 'aliases' in info:
|
||||
aliases = info['aliases']
|
||||
ncentroids = {}
|
||||
for k1, v1 in info['centroids'].items():
|
||||
nv1 = {}
|
||||
for k2, v2 in v1.items():
|
||||
nv1[aliases.get(k2, k2)] = v2
|
||||
ncentroids[aliases.get(k1, k1)] = nv1
|
||||
info['centroids'] = ncentroids
|
||||
|
||||
super(CentroidConversion, self).__init__(info)
|
||||
|
||||
self.dimensions = set()
|
||||
for c in self.centroids.values():
|
||||
self.dimensions.update(c.keys())
|
||||
self.neutralPoints = self.get("neutralPoints", dict())
|
||||
if not self.neutralPoints:
|
||||
for i in self.dimensions:
|
||||
self.neutralPoints[i] = self.get("neutralValue", 0)
|
||||
|
||||
def _forward_conversion(self, original):
|
||||
"""Sum the VAD value of all categories found weighted by intensity.
|
||||
Intensities are scaled by onyx:maxIntensityValue if it is present, else maxIntensityValue
|
||||
is assumed to be one. Emotion entries that do not have onxy:hasEmotionIntensity specified
|
||||
are assumed to have maxIntensityValue. Emotion entries that do not have
|
||||
onyx:hasEmotionCategory specified are ignored."""
|
||||
res = Emotion()
|
||||
maxIntensity = float(original.get("onyx:maxIntensityValue", 1))
|
||||
for e in original.onyx__hasEmotion:
|
||||
category = e.get("onyx:hasEmotionCategory", None)
|
||||
if not category:
|
||||
continue
|
||||
intensity = e.get("onyx:hasEmotionIntensity", maxIntensity) / maxIntensity
|
||||
if not intensity:
|
||||
continue
|
||||
centroid = self.centroids.get(category, None)
|
||||
if centroid:
|
||||
for dim, value in centroid.items():
|
||||
neutral = self.neutralPoints[dim]
|
||||
if dim not in res:
|
||||
res[dim] = 0
|
||||
res[dim] += (value - neutral) * intensity + neutral
|
||||
return res
|
||||
|
||||
def _backwards_conversion(self, original):
|
||||
"""Find the closest category"""
|
||||
centroids = self.centroids
|
||||
neutralPoints = self.neutralPoints
|
||||
dimensions = self.dimensions
|
||||
|
||||
def distance_k(centroid, original, k):
|
||||
# k component of the distance between the value and a given centroid
|
||||
return (centroid.get(k, neutralPoints[k]) - original.get(k, neutralPoints[k]))**2
|
||||
|
||||
def distance(centroid):
|
||||
return sum(distance_k(centroid, original, k) for k in dimensions)
|
||||
|
||||
emotion = min(centroids, key=lambda x: distance(centroids[x]))
|
||||
|
||||
result = Emotion(onyx__hasEmotionCategory=emotion)
|
||||
result.onyx__algorithmConfidence = distance(centroids[emotion])
|
||||
return result
|
||||
|
||||
def convert(self, emotionSet, fromModel, toModel, params):
|
||||
|
||||
cf, ct = self.centroids_direction
|
||||
logger.debug(
|
||||
'{}\n{}\n{}\n{}'.format(emotionSet, fromModel, toModel, params))
|
||||
e = EmotionSet()
|
||||
if fromModel == cf and toModel == ct:
|
||||
e.onyx__hasEmotion.append(self._forward_conversion(emotionSet))
|
||||
elif fromModel == ct and toModel == cf:
|
||||
for i in emotionSet.onyx__hasEmotion:
|
||||
e.onyx__hasEmotion.append(self._backwards_conversion(i))
|
||||
else:
|
||||
raise Error('EMOTION MODEL NOT KNOWN')
|
||||
yield e
|
||||
Reference in New Issue
Block a user