mirror of
https://github.com/gsi-upm/senpy
synced 2024-11-25 01:22:28 +00:00
Add depeche mood
This commit is contained in:
parent
4507449266
commit
675a905ab4
112
emotion-depechemood/depechemood_plugin.py
Normal file
112
emotion-depechemood/depechemood_plugin.py
Normal file
@ -0,0 +1,112 @@
|
|||||||
|
#!/usr/local/bin/python
|
||||||
|
# coding: utf-8
|
||||||
|
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
import string
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from six.moves import urllib
|
||||||
|
from nltk.corpus import stopwords
|
||||||
|
|
||||||
|
from senpy import EmotionPlugin, TextBox, models
|
||||||
|
|
||||||
|
|
||||||
|
class DepecheMood(TextBox, EmotionPlugin):
|
||||||
|
'''Plugin that uses the DepecheMood++ emotion lexicon.'''
|
||||||
|
|
||||||
|
author = 'Oscar Araque'
|
||||||
|
version = '0.1'
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super(DepecheMood, self).__init__(*args, **kwargs)
|
||||||
|
self.LEXICON_URL = "https://github.com/marcoguerini/DepecheMood/raw/master/DepecheMood%2B%2B/DepecheMood_english_token_full.tsv"
|
||||||
|
self.EMOTIONS = ['AFRAID', 'AMUSED', 'ANGRY', 'ANNOYED', 'DONT_CARE', 'HAPPY', 'INSPIRED', 'SAD',]
|
||||||
|
self.noise = self._noise()
|
||||||
|
self.stop_words = stopwords.words('english') + ['']
|
||||||
|
|
||||||
|
def _noise(self):
|
||||||
|
noise = set(string.punctuation) | set('«»')
|
||||||
|
noise = {ord(c): None for c in noise}
|
||||||
|
return noise
|
||||||
|
|
||||||
|
def activate(self):
|
||||||
|
self._lex = self.download_lex()
|
||||||
|
self._lex_vocab = set(list(self._lex.keys()))
|
||||||
|
|
||||||
|
def clean_str(self, string):
|
||||||
|
string = re.sub(r"[^A-Za-z0-9().,!?\'\`]", " ", string)
|
||||||
|
string = re.sub(r"[0-9]+", " num ", string)
|
||||||
|
string = re.sub(r"\'s", " \'s", string)
|
||||||
|
string = re.sub(r"\'ve", " \'ve", string)
|
||||||
|
string = re.sub(r"n\'t", " n\'t", string)
|
||||||
|
string = re.sub(r"\'re", " \'re", string)
|
||||||
|
string = re.sub(r"\'d", " \'d", string)
|
||||||
|
string = re.sub(r"\'ll", " \'ll", string)
|
||||||
|
string = re.sub(r"\.", " . ", string)
|
||||||
|
string = re.sub(r",", " , ", string)
|
||||||
|
string = re.sub(r"!", " ! ", string)
|
||||||
|
string = re.sub(r"\(", " ( ", string)
|
||||||
|
string = re.sub(r"\)", " ) ", string)
|
||||||
|
string = re.sub(r"\?", " ? ", string)
|
||||||
|
string = re.sub(r"\s{2,}", " ", string)
|
||||||
|
return string.strip().lower()
|
||||||
|
|
||||||
|
def preprocess(self, text):
|
||||||
|
if text is None:
|
||||||
|
return None
|
||||||
|
tokens = self.clean_str(text).translate(self.noise).split(' ')
|
||||||
|
tokens = [tok for tok in tokens if tok not in self.stop_words]
|
||||||
|
return tokens
|
||||||
|
|
||||||
|
def estimate_emotion(self, tokens, emotion):
|
||||||
|
s = []
|
||||||
|
for tok in tokens:
|
||||||
|
s.append(self._lex[tok][emotion])
|
||||||
|
dividend = np.sum(s) if np.sum(s) > 0 else 0
|
||||||
|
divisor = len(s) if len(s) > 0 else 1
|
||||||
|
S = np.sum(s) / divisor
|
||||||
|
return S
|
||||||
|
|
||||||
|
def estimate_all_emotions(self, tokens):
|
||||||
|
S = {emotion: None for emotion in self.EMOTIONS}
|
||||||
|
intersection = set(tokens) & self._lex_vocab
|
||||||
|
for emotion in self.EMOTIONS:
|
||||||
|
s = self.estimate_emotion(intersection, emotion)
|
||||||
|
S[emotion] = s
|
||||||
|
return S
|
||||||
|
|
||||||
|
def download_lex(self, file_path='./DepecheMood_english_token_full.tsv', freq_threshold=10):
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
filename, _ = urllib.request.urlretrieve(self.LEXICON_URL, file_path)
|
||||||
|
|
||||||
|
lexicon = pd.read_csv(file_path, sep='\t', index_col=0)
|
||||||
|
lexicon = lexicon[lexicon['freq'] >= 10]
|
||||||
|
lexicon.drop('freq', axis=1, inplace=True)
|
||||||
|
lexicon = lexicon.T.to_dict()
|
||||||
|
return lexicon
|
||||||
|
|
||||||
|
def output(self, output, entry, **kwargs):
|
||||||
|
s = models.EmotionSet()
|
||||||
|
entry.emotions.append(s)
|
||||||
|
for label, value in output.items():
|
||||||
|
e = models.Emotion(onyx__hasEmotionCategory=label,
|
||||||
|
onyx__hasEmotionIntensity=value)
|
||||||
|
s.onyx__hasEmotion.append(e)
|
||||||
|
return entry
|
||||||
|
|
||||||
|
def predict_one(self, input, **kwargs):
|
||||||
|
tokens = self.preprocess(input)
|
||||||
|
estimation = self.estimate_all_emotions(tokens)
|
||||||
|
return estimation
|
||||||
|
|
||||||
|
test_cases = [
|
||||||
|
{
|
||||||
|
'text': ''
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
from senpy.utils import easy
|
||||||
|
easy()
|
Loading…
Reference in New Issue
Block a user