mirror of
https://github.com/gsi-upm/senpy
synced 2024-12-22 13:08:13 +00:00
Add basic evaluation and fix installation
* Merge branch '44-add-basic-evaluation-with-gsitk' * Refactor requirements (add extra-requirements) * Skip evaluation tests in Py2 * Fix installation with PIP * Implement the evaluation service inside the Senpy API * Connect Plugins to GSITK's evaluation module * Add an evaluation method inside the Senpy Context * Add the evaluation models and schemas * Add Evaluation to the Playground, with a table view * Add evaluation tests
This commit is contained in:
commit
55db97cf62
@ -20,8 +20,8 @@ ONBUILD WORKDIR /senpy-plugins/
|
||||
|
||||
|
||||
WORKDIR /usr/src/app
|
||||
COPY test-requirements.txt requirements.txt /usr/src/app/
|
||||
RUN pip install --no-cache-dir --use-wheel -r test-requirements.txt -r requirements.txt
|
||||
COPY test-requirements.txt requirements.txt extra-requirements.txt /usr/src/app/
|
||||
RUN pip install --no-cache-dir -r test-requirements.txt -r requirements.txt -r extra-requirements.txt
|
||||
COPY . /usr/src/app/
|
||||
RUN pip install --no-cache-dir --no-index --no-deps --editable .
|
||||
|
||||
|
@ -1,8 +1,11 @@
|
||||
What is Senpy?
|
||||
--------------
|
||||
|
||||
Web services can get really complex: data validation, user interaction, formatting, logging., etc.
|
||||
The figure below summarizes the typical features in an analysis service.
|
||||
Senpy is a framework for text analysis using Linked Data. There are three main applications of Senpy so far: sentiment and emotion analysis, user profiling and entity recoginition. Annotations and Services are compliant with NIF (NLP Interchange Format).
|
||||
|
||||
Senpy aims at providing a framework where analysis modules can be integrated easily as plugins, and providing a core functionality for managing tasks such as data validation, user interaction, formatting, logging, translation to linked data, etc.
|
||||
|
||||
The figure below summarizes the typical features in a text analysis service.
|
||||
Senpy implements all the common blocks, so developers can focus on what really matters: great analysis algorithms that solve real problems.
|
||||
|
||||
.. image:: senpy-framework.png
|
||||
|
@ -1,8 +1,24 @@
|
||||
Vocabularies and model
|
||||
======================
|
||||
|
||||
The model used in Senpy is based on the following vocabularies:
|
||||
The model used in Senpy is based on NIF 2.0 [1], which defines a semantic format and API for improving interoperability among natural language processing services.
|
||||
|
||||
* Marl, a vocabulary designed to annotate and describe subjetive opinions expressed on the web or in information systems.
|
||||
* Onyx, which is built one the same principles as Marl to annotate and describe emotions, and provides interoperability with Emotion Markup Language.
|
||||
* NIF 2.0, which defines a semantic format and APO for improving interoperability among natural language processing services
|
||||
Senpy has been applied to sentiment and emotion analysis services using the following vocabularies:
|
||||
|
||||
* Marl [2,6], a vocabulary designed to annotate and describe subjetive opinions expressed on the web or in information systems.
|
||||
* Onyx [3,5], which is built one the same principles as Marl to annotate and describe emotions, and provides interoperability with Emotion Markup Language.
|
||||
|
||||
An overview of the vocabularies and their use can be found in [4].
|
||||
|
||||
|
||||
[1] Guidelines for developing NIF-based NLP services, Final Community Group Report 22 December 2015 Available at: https://www.w3.org/2015/09/bpmlod-reports/nif-based-nlp-webservices/
|
||||
|
||||
[2] Marl Ontology Specification, available at http://www.gsi.dit.upm.es/ontologies/marl/
|
||||
|
||||
[3] Onyx Ontology Specification, available at http://www.gsi.dit.upm.es/ontologies/onyx/
|
||||
|
||||
[4] Iglesias, C. A., Sánchez-Rada, J. F., Vulcu, G., & Buitelaar, P. (2017). Linked Data Models for Sentiment and Emotion Analysis in Social Networks. In Sentiment Analysis in Social Networks (pp. 49-69).
|
||||
|
||||
[5] Sánchez-Rada, J. F., & Iglesias, C. A. (2016). Onyx: A linked data approach to emotion representation. Information Processing & Management, 52(1), 99-114.
|
||||
|
||||
[6] Westerski, A., Iglesias Fernandez, C. A., & Tapia Rico, F. (2011). Linked opinions: Describing sentiments on the structured web of data.
|
||||
|
@ -18,7 +18,7 @@ class BasicBox(SentimentBox):
|
||||
'default': 'marl:Neutral'
|
||||
}
|
||||
|
||||
def predict(self, input):
|
||||
def predict_one(self, input):
|
||||
output = basic.get_polarity(input)
|
||||
return self.mappings.get(output, self.mappings['default'])
|
||||
|
||||
|
@ -18,7 +18,7 @@ class Basic(MappingMixin, SentimentBox):
|
||||
'default': 'marl:Neutral'
|
||||
}
|
||||
|
||||
def predict(self, input):
|
||||
def predict_one(self, input):
|
||||
return basic.get_polarity(input)
|
||||
|
||||
test_cases = [{
|
||||
|
@ -18,7 +18,7 @@ class PipelineSentiment(MappingMixin, SentimentBox):
|
||||
-1: 'marl:Negative'
|
||||
}
|
||||
|
||||
def predict(self, input):
|
||||
def predict_one(self, input):
|
||||
return pipeline.predict([input, ])[0]
|
||||
|
||||
test_cases = [
|
||||
|
1
extra-requirements.txt
Normal file
1
extra-requirements.txt
Normal file
@ -0,0 +1 @@
|
||||
gsitk
|
15
senpy/api.py
15
senpy/api.py
@ -53,6 +53,21 @@ API_PARAMS = {
|
||||
}
|
||||
}
|
||||
|
||||
EVAL_PARAMS = {
|
||||
"algorithm": {
|
||||
"aliases": ["plug", "p", "plugins", "algorithms", 'algo', 'a', 'plugin'],
|
||||
"description": "Plugins to be evaluated",
|
||||
"required": True,
|
||||
"help": "See activated plugins in /plugins"
|
||||
},
|
||||
"dataset": {
|
||||
"aliases": ["datasets", "data", "d"],
|
||||
"description": "Datasets to be evaluated",
|
||||
"required": True,
|
||||
"help": "See avalaible datasets in /datasets"
|
||||
}
|
||||
}
|
||||
|
||||
PLUGINS_PARAMS = {
|
||||
"plugin_type": {
|
||||
"@id": "pluginType",
|
||||
|
@ -19,7 +19,7 @@ Blueprints for Senpy
|
||||
"""
|
||||
from flask import (Blueprint, request, current_app, render_template, url_for,
|
||||
jsonify)
|
||||
from .models import Error, Response, Help, Plugins, read_schema
|
||||
from .models import Error, Response, Help, Plugins, read_schema, Datasets
|
||||
from . import api
|
||||
from .version import __version__
|
||||
from functools import wraps
|
||||
@ -133,6 +133,17 @@ def api_root():
|
||||
req = api.parse_call(request.parameters)
|
||||
return current_app.senpy.analyse(req)
|
||||
|
||||
@api_blueprint.route('/evaluate/', methods=['POST', 'GET'])
|
||||
@basic_api
|
||||
def evaluate():
|
||||
if request.parameters['help']:
|
||||
dic = dict(api.EVAL_PARAMS)
|
||||
response = Help(parameters=dic)
|
||||
return response
|
||||
else:
|
||||
params = api.parse_params(request.parameters, api.EVAL_PARAMS)
|
||||
response = current_app.senpy.evaluate(params)
|
||||
return response
|
||||
|
||||
@api_blueprint.route('/plugins/', methods=['POST', 'GET'])
|
||||
@basic_api
|
||||
@ -150,3 +161,12 @@ def plugins():
|
||||
def plugin(plugin=None):
|
||||
sp = current_app.senpy
|
||||
return sp.get_plugin(plugin)
|
||||
|
||||
|
||||
@api_blueprint.route('/datasets/', methods=['POST','GET'])
|
||||
@basic_api
|
||||
def datasets():
|
||||
sp = current_app.senpy
|
||||
datasets = sp.datasets
|
||||
dic = Datasets(datasets = list(datasets.values()))
|
||||
return dic
|
@ -12,10 +12,17 @@ class Client(object):
|
||||
def analyse(self, input, method='GET', **kwargs):
|
||||
return self.request('/', method=method, input=input, **kwargs)
|
||||
|
||||
def evaluate(self, input, method='GET', **kwargs):
|
||||
return self.request('/evaluate', method = method, input=input, **kwargs)
|
||||
|
||||
def plugins(self, *args, **kwargs):
|
||||
resp = self.request(path='/plugins').plugins
|
||||
return {p.name: p for p in resp}
|
||||
|
||||
def datasets(self):
|
||||
resp = self.request(path='/datasets').datasets
|
||||
return {d.name: d for d in resp}
|
||||
|
||||
def request(self, path=None, method='GET', **params):
|
||||
url = '{}{}'.format(self.endpoint, path)
|
||||
response = requests.request(method=method, url=url, params=params)
|
||||
|
@ -6,8 +6,8 @@ from future import standard_library
|
||||
standard_library.install_aliases()
|
||||
|
||||
from . import plugins, api
|
||||
from .plugins import Plugin
|
||||
from .models import Error
|
||||
from .plugins import Plugin, evaluate
|
||||
from .models import Error, AggregatedEvaluation
|
||||
from .blueprints import api_blueprint, demo_blueprint, ns_blueprint
|
||||
|
||||
from threading import Thread
|
||||
@ -17,12 +17,19 @@ import copy
|
||||
import errno
|
||||
import logging
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
try:
|
||||
from gsitk.datasets.datasets import DatasetManager
|
||||
GSITK_AVAILABLE = True
|
||||
except ImportError:
|
||||
logger.warn('GSITK is not installed. Some functions will be unavailable.')
|
||||
GSITK_AVAILABLE = False
|
||||
|
||||
|
||||
class Senpy(object):
|
||||
""" Default Senpy extension for Flask """
|
||||
|
||||
def __init__(self,
|
||||
app=None,
|
||||
plugin_folder=".",
|
||||
@ -181,6 +188,55 @@ class Senpy(object):
|
||||
results.analysis = [i['plugin'].id for i in results.analysis]
|
||||
return results
|
||||
|
||||
def _get_datasets(self, request):
|
||||
if not self.datasets:
|
||||
raise Error(
|
||||
status=404,
|
||||
message=("No datasets found."
|
||||
" Please verify DatasetManager"))
|
||||
datasets_name = request.parameters.get('dataset', None).split(',')
|
||||
for dataset in datasets_name:
|
||||
if dataset not in self.datasets:
|
||||
logger.debug(("The dataset '{}' is not valid\n"
|
||||
"Valid datasets: {}").format(dataset,
|
||||
self.datasets.keys()))
|
||||
raise Error(
|
||||
status=404,
|
||||
message="The dataset '{}' is not valid".format(dataset))
|
||||
dm = DatasetManager()
|
||||
datasets = dm.prepare_datasets(datasets_name)
|
||||
return datasets
|
||||
|
||||
@property
|
||||
def datasets(self):
|
||||
if not GSITK_AVAILABLE:
|
||||
raise Exception('GSITK is not available. Install it to use this function.')
|
||||
self._dataset_list = {}
|
||||
dm = DatasetManager()
|
||||
for item in dm.get_datasets():
|
||||
for key in item:
|
||||
if key in self._dataset_list:
|
||||
continue
|
||||
properties = item[key]
|
||||
properties['@id'] = key
|
||||
self._dataset_list[key] = properties
|
||||
return self._dataset_list
|
||||
|
||||
def evaluate(self, params):
|
||||
if not GSITK_AVAILABLE:
|
||||
raise Exception('GSITK is not available. Install it to use this function.')
|
||||
logger.debug("evaluating request: {}".format(params))
|
||||
results = AggregatedEvaluation()
|
||||
results.parameters = params
|
||||
datasets = self._get_datasets(results)
|
||||
plugins = self._get_plugins(results)
|
||||
for eval in evaluate(plugins, datasets):
|
||||
results.evaluations.append(eval)
|
||||
if 'with_parameters' not in results.parameters:
|
||||
del results.parameters
|
||||
logger.debug("Returning evaluation result: {}".format(results))
|
||||
return results
|
||||
|
||||
def _conversion_candidates(self, fromModel, toModel):
|
||||
candidates = self.plugins(plugin_type='emotionConversionPlugin')
|
||||
for candidate in candidates:
|
||||
|
@ -335,5 +335,11 @@ for i in [
|
||||
'results',
|
||||
'sentimentPlugin',
|
||||
'suggestion',
|
||||
'aggregatedEvaluation',
|
||||
'evaluation',
|
||||
'metric',
|
||||
'dataset',
|
||||
'datasets',
|
||||
|
||||
]:
|
||||
_add_class_from_schema(i)
|
||||
|
@ -19,11 +19,22 @@ import importlib
|
||||
import yaml
|
||||
import threading
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .. import models, utils
|
||||
from .. import api
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
try:
|
||||
from gsitk.evaluation.evaluation import Evaluation as Eval
|
||||
from sklearn.pipeline import Pipeline
|
||||
GSITK_AVAILABLE = True
|
||||
except ImportError:
|
||||
logger.warn('GSITK is not installed. Some functions will be unavailable.')
|
||||
GSITK_AVAILABLE = False
|
||||
|
||||
|
||||
class PluginMeta(models.BaseMeta):
|
||||
_classes = {}
|
||||
@ -251,7 +262,7 @@ class Box(AnalysisPlugin):
|
||||
|
||||
.. code-block::
|
||||
|
||||
entry --> input() --> predict() --> output() --> entry'
|
||||
entry --> input() --> predict_one() --> output() --> entry'
|
||||
|
||||
|
||||
In other words: their ``input`` method convers a query (entry and a set of parameters) into
|
||||
@ -267,15 +278,33 @@ class Box(AnalysisPlugin):
|
||||
'''Transforms the results of the black box into an entry'''
|
||||
return output
|
||||
|
||||
def predict(self, input):
|
||||
def predict_one(self, input):
|
||||
raise NotImplementedError('You should define the behavior of this plugin')
|
||||
|
||||
def analyse_entries(self, entries, params):
|
||||
for entry in entries:
|
||||
input = self.input(entry=entry, params=params)
|
||||
results = self.predict(input=input)
|
||||
results = self.predict_one(input=input)
|
||||
yield self.output(output=results, entry=entry, params=params)
|
||||
|
||||
def fit(self, X=None, y=None):
|
||||
return self
|
||||
|
||||
def transform(self, X):
|
||||
return np.array([self.predict_one(x) for x in X])
|
||||
|
||||
def predict(self, X):
|
||||
return self.transform(X)
|
||||
|
||||
def fit_transform(self, X, y):
|
||||
self.fit(X, y)
|
||||
return self.transform(X)
|
||||
|
||||
def as_pipe(self):
|
||||
pipe = Pipeline([('plugin', self)])
|
||||
pipe.name = self.name
|
||||
return pipe
|
||||
|
||||
|
||||
class TextBox(Box):
|
||||
'''A black box plugin that takes only text as input'''
|
||||
@ -438,7 +467,7 @@ def install_deps(*plugins):
|
||||
for info in plugins:
|
||||
requirements = info.get('requirements', [])
|
||||
if requirements:
|
||||
pip_args = [sys.executable, '-m', 'pip', 'install', '--use-wheel']
|
||||
pip_args = [sys.executable, '-m', 'pip', 'install']
|
||||
for req in requirements:
|
||||
pip_args.append(req)
|
||||
logger.info('Installing requirements: ' + str(requirements))
|
||||
@ -560,3 +589,50 @@ def _from_loaded_module(module, info=None, **kwargs):
|
||||
yield cls(info=info, **kwargs)
|
||||
for instance in _instances_in_module(module):
|
||||
yield instance
|
||||
|
||||
|
||||
def evaluate(plugins, datasets, **kwargs):
|
||||
if not GSITK_AVAILABLE:
|
||||
raise Exception('GSITK is not available. Install it to use this function.')
|
||||
|
||||
ev = Eval(tuples=None,
|
||||
datasets=datasets,
|
||||
pipelines=[plugin.as_pipe() for plugin in plugins])
|
||||
ev.evaluate()
|
||||
results = ev.results
|
||||
evaluations = evaluations_to_JSONLD(results, **kwargs)
|
||||
return evaluations
|
||||
|
||||
|
||||
def evaluations_to_JSONLD(results, flatten=False):
|
||||
'''
|
||||
Map the evaluation results to a JSONLD scheme
|
||||
'''
|
||||
|
||||
evaluations = list()
|
||||
metric_names = ['accuracy', 'precision_macro', 'recall_macro',
|
||||
'f1_macro', 'f1_weighted', 'f1_micro', 'f1_macro']
|
||||
|
||||
for index, row in results.iterrows():
|
||||
evaluation = models.Evaluation()
|
||||
if row.get('CV', True):
|
||||
evaluation['@type'] = ['StaticCV', 'Evaluation']
|
||||
evaluation.evaluatesOn = row['Dataset']
|
||||
evaluation.evaluates = row['Model']
|
||||
i = 0
|
||||
if flatten:
|
||||
metric = models.Metric()
|
||||
for name in metric_names:
|
||||
metric[name] = row[name]
|
||||
evaluation.metrics.append(metric)
|
||||
else:
|
||||
# We should probably discontinue this representation
|
||||
for name in metric_names:
|
||||
metric = models.Metric()
|
||||
metric['@id'] = 'Metric' + str(i)
|
||||
metric['@type'] = name.capitalize()
|
||||
metric.value = row[name]
|
||||
evaluation.metrics.append(metric)
|
||||
i += 1
|
||||
evaluations.append(evaluation)
|
||||
return evaluations
|
||||
|
38
senpy/schemas/aggregatedEvaluation.json
Normal file
38
senpy/schemas/aggregatedEvaluation.json
Normal file
@ -0,0 +1,38 @@
|
||||
{
|
||||
"$schema": "http://json-schema.org/draft-04/schema#",
|
||||
"allOf": [
|
||||
{"$ref": "response.json"},
|
||||
{
|
||||
"title": "AggregatedEvaluation",
|
||||
"description": "The results of the evaluation",
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"@context": {
|
||||
"$ref": "context.json"
|
||||
},
|
||||
"@type": {
|
||||
"default": "AggregatedEvaluation"
|
||||
},
|
||||
"@id": {
|
||||
"description": "ID of the aggregated evaluation",
|
||||
"type": "string"
|
||||
},
|
||||
"evaluations": {
|
||||
"default": [],
|
||||
"type": "array",
|
||||
"items": {
|
||||
"anyOf": [
|
||||
{
|
||||
"$ref": "evaluation.json"
|
||||
},{
|
||||
"type": "string"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
},
|
||||
"required": ["@id", "evaluations"]
|
||||
}
|
||||
]
|
||||
}
|
29
senpy/schemas/dataset.json
Normal file
29
senpy/schemas/dataset.json
Normal file
@ -0,0 +1,29 @@
|
||||
{
|
||||
"$schema": "http://json-schema.org/draft-04/schema#",
|
||||
"name": "Dataset",
|
||||
"properties": {
|
||||
"@id": {
|
||||
"type": "string"
|
||||
},
|
||||
"name": {
|
||||
"type": "string"
|
||||
},
|
||||
"compression": {
|
||||
"type": "string"
|
||||
},
|
||||
"expected_bytes": {
|
||||
"type": "int"
|
||||
},
|
||||
"filename": {
|
||||
"description": "Name of the dataset",
|
||||
"type": "string"
|
||||
},
|
||||
"url": {
|
||||
"description": "Classifier or plugin evaluated",
|
||||
"type": "string"
|
||||
},
|
||||
"stats": {
|
||||
}
|
||||
},
|
||||
"required": ["@id"]
|
||||
}
|
18
senpy/schemas/datasets.json
Normal file
18
senpy/schemas/datasets.json
Normal file
@ -0,0 +1,18 @@
|
||||
{
|
||||
"$schema": "http://json-schema.org/draft-04/schema#",
|
||||
"allOf": [
|
||||
{"$ref": "response.json"},
|
||||
{
|
||||
"required": ["datasets"],
|
||||
"properties": {
|
||||
"datasets": {
|
||||
"type": "array",
|
||||
"default": [],
|
||||
"items": {
|
||||
"$ref": "dataset.json"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
@ -41,5 +41,20 @@
|
||||
},
|
||||
"Response": {
|
||||
"$ref": "response.json"
|
||||
},
|
||||
"AggregatedEvaluation": {
|
||||
"$ref": "aggregatedEvaluation.json"
|
||||
},
|
||||
"Evaluation": {
|
||||
"$ref": "evaluation.json"
|
||||
},
|
||||
"Metric": {
|
||||
"$ref": "metric.json"
|
||||
},
|
||||
"Dataset": {
|
||||
"$ref": "dataset.json"
|
||||
},
|
||||
"Datasets": {
|
||||
"$ref": "datasets.json"
|
||||
}
|
||||
}
|
||||
|
28
senpy/schemas/evaluation.json
Normal file
28
senpy/schemas/evaluation.json
Normal file
@ -0,0 +1,28 @@
|
||||
{
|
||||
"$schema": "http://json-schema.org/draft-04/schema#",
|
||||
"name": "Evalation",
|
||||
"properties": {
|
||||
"@id": {
|
||||
"type": "string"
|
||||
},
|
||||
"@type": {
|
||||
"type": "array",
|
||||
"default": "Evaluation"
|
||||
|
||||
},
|
||||
"metrics": {
|
||||
"type": "array",
|
||||
"items": {"$ref": "metric.json" },
|
||||
"default": []
|
||||
},
|
||||
"evaluatesOn": {
|
||||
"description": "Name of the dataset evaluated ",
|
||||
"type": "string"
|
||||
},
|
||||
"evaluates": {
|
||||
"description": "Classifier or plugin evaluated",
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
"required": ["@id", "metrics"]
|
||||
}
|
24
senpy/schemas/metric.json
Normal file
24
senpy/schemas/metric.json
Normal file
@ -0,0 +1,24 @@
|
||||
{
|
||||
"$schema": "http://json-schema.org/draft-04/schema#",
|
||||
"properties": {
|
||||
"@id": {
|
||||
"type": "string"
|
||||
},
|
||||
"@type": {
|
||||
"type": "string"
|
||||
},
|
||||
"maxValue": {
|
||||
"type": "number"
|
||||
},
|
||||
"minValue": {
|
||||
"type": "number"
|
||||
},
|
||||
"value": {
|
||||
"type": "number"
|
||||
},
|
||||
"deviation": {
|
||||
"type": "number"
|
||||
}
|
||||
},
|
||||
"required": ["@id"]
|
||||
}
|
@ -33,6 +33,10 @@ function get_plugins(response){
|
||||
plugins = response.plugins;
|
||||
}
|
||||
|
||||
function get_datasets(response){
|
||||
datasets = response.datasets
|
||||
}
|
||||
|
||||
function group_plugins(){
|
||||
for (r in plugins){
|
||||
ptype = plugins[r]['@type'];
|
||||
@ -77,7 +81,10 @@ function draw_plugins_selection(){
|
||||
}
|
||||
}
|
||||
html += "</optgroup>"
|
||||
document.getElementById('plugins').innerHTML = html;
|
||||
// Two elements with plugin class
|
||||
// One from the evaluate tab and another one from the analyse tab
|
||||
document.getElementsByClassName('plugin')[0].innerHTML = html;
|
||||
document.getElementsByClassName('plugin')[1].innerHTML = html;
|
||||
}
|
||||
|
||||
function draw_plugins_list(){
|
||||
@ -98,15 +105,29 @@ function draw_plugins_list(){
|
||||
}
|
||||
}
|
||||
|
||||
function draw_datasets(){
|
||||
html = "";
|
||||
repeated_html = "<input class=\"checks-datasets\" type=\"checkbox\" value=\"";
|
||||
for (dataset in datasets){
|
||||
html += repeated_html+datasets[dataset]["@id"]+"\">"+datasets[dataset]["@id"];
|
||||
html += "<br>"
|
||||
}
|
||||
document.getElementById("datasets").innerHTML = html;
|
||||
}
|
||||
|
||||
$(document).ready(function() {
|
||||
var response = JSON.parse($.ajax({type: "GET", url: "/api/plugins/" , async: false}).responseText);
|
||||
defaultPlugin= JSON.parse($.ajax({type: "GET", url: "/api/plugins/default" , async: false}).responseText);
|
||||
var response2 = JSON.parse($.ajax({type: "GET", url: "/api/datasets/" , async: false}).responseText);
|
||||
|
||||
get_plugins(response);
|
||||
get_default_parameters();
|
||||
get_datasets(response2);
|
||||
|
||||
draw_plugins_list();
|
||||
draw_plugins_selection();
|
||||
draw_parameters();
|
||||
draw_datasets();
|
||||
|
||||
$(window).on('hashchange', hashchanged);
|
||||
hashchanged();
|
||||
@ -129,7 +150,7 @@ function draw_default_parameters(){
|
||||
}
|
||||
|
||||
function draw_extra_parameters(){
|
||||
var plugin = document.getElementById("plugins").options[document.getElementById("plugins").selectedIndex].value;
|
||||
var plugin = document.getElementsByClassName('plugin')[0].options[document.getElementsByClassName('plugin')[0].selectedIndex].value;
|
||||
get_parameters();
|
||||
|
||||
var extra_params = document.getElementById("extra_params");
|
||||
@ -240,13 +261,16 @@ function add_param(key, value){
|
||||
return "&"+key+"="+value;
|
||||
}
|
||||
|
||||
|
||||
function load_JSON(){
|
||||
url = "/api";
|
||||
var container = document.getElementById('results');
|
||||
var rawcontainer = document.getElementById("jsonraw");
|
||||
rawcontainer.innerHTML = '';
|
||||
container.innerHTML = '';
|
||||
var plugin = document.getElementById("plugins").options[document.getElementById("plugins").selectedIndex].value;
|
||||
|
||||
var plugin = document.getElementsByClassName("plugin")[0].options[document.getElementsByClassName("plugin")[0].selectedIndex].value;
|
||||
|
||||
var input = encodeURIComponent(document.getElementById("input").value);
|
||||
url += "?algo="+plugin+"&i="+input
|
||||
|
||||
@ -278,3 +302,85 @@ function load_JSON(){
|
||||
// location.hash = 'raw';
|
||||
}
|
||||
}
|
||||
|
||||
function get_datasets_from_checkbox(){
|
||||
var checks = document.getElementsByClassName("checks-datasets");
|
||||
|
||||
datasets = "";
|
||||
for (var i = 0; i < checks.length; i++){
|
||||
if (checks[i].checked){
|
||||
datasets += checks[i].value + ",";
|
||||
}
|
||||
}
|
||||
datasets = datasets.slice(0, -1);
|
||||
}
|
||||
|
||||
|
||||
function create_body_metrics(evaluations){
|
||||
var new_tbody = document.createElement('tbody')
|
||||
var metric_html = ""
|
||||
for (var eval in evaluations){
|
||||
metric_html += "<tr><th>"+evaluations[eval].evaluates+"</th><th>"+evaluations[eval].evaluatesOn+"</th>";
|
||||
for (var metric in evaluations[eval].metrics){
|
||||
metric_html += "<th>"+parseFloat(evaluations[eval].metrics[metric].value.toFixed(4))+"</th>";
|
||||
}
|
||||
metric_html += "</tr>";
|
||||
}
|
||||
new_tbody.innerHTML = metric_html
|
||||
return new_tbody
|
||||
}
|
||||
|
||||
function evaluate_JSON(){
|
||||
|
||||
url = "/api/evaluate";
|
||||
|
||||
var container = document.getElementById('results_eval');
|
||||
var rawcontainer = document.getElementById('jsonraw_eval');
|
||||
var table = document.getElementById("eval_table");
|
||||
|
||||
rawcontainer.innerHTML = "";
|
||||
container.innerHTML = "";
|
||||
|
||||
var plugin = document.getElementsByClassName("plugin")[0].options[document.getElementsByClassName("plugin")[0].selectedIndex].value;
|
||||
|
||||
get_datasets_from_checkbox();
|
||||
|
||||
url += "?algo="+plugin+"&dataset="+datasets
|
||||
|
||||
var response = $.ajax({type: "GET", url: url , async: false, dataType: 'json'}).responseText;
|
||||
rawcontainer.innerHTML = replaceURLWithHTMLLinks(response);
|
||||
|
||||
document.getElementById("input_request_eval").innerHTML = "<a href='"+url+"'>"+url+"</a>"
|
||||
document.getElementById("evaluate-div").style.display = 'block';
|
||||
|
||||
try {
|
||||
response = JSON.parse(response);
|
||||
var options = {
|
||||
mode: 'view'
|
||||
};
|
||||
|
||||
//Control the single response results
|
||||
if (!(Array.isArray(response.evaluations))){
|
||||
response.evaluations = [response.evaluations]
|
||||
}
|
||||
|
||||
new_tbody = create_body_metrics(response.evaluations)
|
||||
table.replaceChild(new_tbody, table.lastElementChild)
|
||||
|
||||
var editor = new JSONEditor(container, options, response);
|
||||
editor.expandAll();
|
||||
// $('#results-div a[href="#viewer"]').tab('show');
|
||||
$('#evaluate-div a[href="#evaluate-table"]').click();
|
||||
// location.hash = 'raw';
|
||||
|
||||
|
||||
}
|
||||
catch(err){
|
||||
console.log("Error decoding JSON (got turtle?)");
|
||||
$('#evaluate-div a[href="#evaluate-raw"]').click();
|
||||
// location.hash = 'raw';
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
@ -32,6 +32,8 @@
|
||||
<ul class="nav nav-tabs" role="tablist">
|
||||
<li role="presentation" ><a class="active" href="#about">About</a></li>
|
||||
<li role="presentation"class="active"><a class="active" href="#test">Test it</a></li>
|
||||
<li role="presentation"><a class="active" href="#evaluate">Evaluate Plugins</a></li>
|
||||
|
||||
</ul>
|
||||
|
||||
<div class="tab-content">
|
||||
@ -54,6 +56,7 @@
|
||||
<ul>
|
||||
<li>List all available plugins: <a href="/api/plugins">/api/plugins</a></li>
|
||||
<li>Get information about the default plugin: <a href="/api/plugins/default">/api/plugins/default</a></li>
|
||||
<li>List all available datasets: <a href="/api/datasets">/api/datasets</a></li>
|
||||
<li>Download the JSON-LD context used: <a href="/api/contexts/Results.jsonld">/api/contexts/Results.jsonld</a></li>
|
||||
</ul>
|
||||
|
||||
@ -95,7 +98,7 @@ I cannot believe it!</textarea>
|
||||
</div>
|
||||
<div>
|
||||
<label>Select the plugin:</label>
|
||||
<select id="plugins" name="plugins" onchange="draw_extra_parameters()">
|
||||
<select id="plugins" name="plugins" class=plugin onchange="draw_extra_parameters()">
|
||||
</select>
|
||||
</div>
|
||||
<!-- PARAMETERS -->
|
||||
@ -151,6 +154,70 @@ I cannot believe it!</textarea>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="tab-pane" id="evaluate">
|
||||
<div class="well">
|
||||
<form id="form" class="container" onsubmit="return getPlugins();" accept-charset="utf-8">
|
||||
<div>
|
||||
<label>Select the plugin:</label>
|
||||
<select id="plugins-eval" name="plugins-eval" class=plugin onchange="draw_extra_parameters()">
|
||||
</select>
|
||||
</div>
|
||||
<div>
|
||||
<label>Select the datasets:</label>
|
||||
<div id="datasets" name="datasets" >
|
||||
</select>
|
||||
</div>
|
||||
|
||||
<a id="preview" class="btn btn-lg btn-primary" onclick="evaluate_JSON()">Evaluate Plugin!</a>
|
||||
<!--<button id="visualise" name="type" type="button">Visualise!</button>-->
|
||||
</form>
|
||||
</div>
|
||||
<span id="input_request_eval"></span>
|
||||
<div id="evaluate-div">
|
||||
<ul class="nav nav-tabs" role="tablist">
|
||||
<li role="presentation" class="active"><a data-toggle="tab" class="active" href="#evaluate-viewer">Viewer</a></li>
|
||||
<li role="presentation"><a data-toggle="tab" class="active" href="#evaluate-raw">Raw</a></li>
|
||||
<li role="presentation"><a data-toggle="tab" class="active" href="#evaluate-table">Table</a></li>
|
||||
</ul>
|
||||
<div class="tab-content" id="evaluate-container">
|
||||
|
||||
<div class="tab-pane active" id="evaluate-viewer">
|
||||
<div id="content">
|
||||
<pre id="results_eval" class="results_eval"></pre>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="tab-pane" id="evaluate-raw">
|
||||
<div id="content">
|
||||
<pre id="jsonraw_eval" class="results_eval"></pre>
|
||||
</div>
|
||||
</div>
|
||||
<div class="tab-pane" id="evaluate-table">
|
||||
<table id="eval_table" class="table table-condensed">
|
||||
<thead>
|
||||
<tr>
|
||||
<th>Plugin</th>
|
||||
<th>Dataset</th>
|
||||
<th>Accuracy</th>
|
||||
<th>Precision_macro</th>
|
||||
<th>Recall_macro</th>
|
||||
<th>F1_macro</th>
|
||||
<th>F1_weighted</th>
|
||||
<th>F1_micro</th>
|
||||
<th>F1</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<a href="http://www.gsi.dit.upm.es" target="_blank"><img class="center-block" src="static/img/gsi.png"/> </a>
|
||||
|
||||
</div>
|
||||
|
27
setup.py
27
setup.py
@ -1,23 +1,20 @@
|
||||
import pip
|
||||
from setuptools import setup
|
||||
# parse_requirements() returns generator of pip.req.InstallRequirement objects
|
||||
from pip.req import parse_requirements
|
||||
|
||||
with open('senpy/VERSION') as f:
|
||||
__version__ = f.read().strip()
|
||||
assert __version__
|
||||
|
||||
try:
|
||||
install_reqs = parse_requirements(
|
||||
"requirements.txt", session=pip.download.PipSession())
|
||||
test_reqs = parse_requirements(
|
||||
"test-requirements.txt", session=pip.download.PipSession())
|
||||
except AttributeError:
|
||||
install_reqs = parse_requirements("requirements.txt")
|
||||
test_reqs = parse_requirements("test-requirements.txt")
|
||||
|
||||
install_reqs = [str(ir.req) for ir in install_reqs]
|
||||
test_reqs = [str(ir.req) for ir in test_reqs]
|
||||
def parse_requirements(filename):
|
||||
""" load requirements from a pip requirements file """
|
||||
with open(filename, 'r') as f:
|
||||
lineiter = list(line.strip() for line in f)
|
||||
return [line for line in lineiter if line and not line.startswith("#")]
|
||||
|
||||
|
||||
install_reqs = parse_requirements("requirements.txt")
|
||||
test_reqs = parse_requirements("test-requirements.txt")
|
||||
extra_reqs = parse_requirements("extra-requirements.txt")
|
||||
|
||||
|
||||
setup(
|
||||
@ -38,9 +35,7 @@ setup(
|
||||
tests_require=test_reqs,
|
||||
setup_requires=['pytest-runner', ],
|
||||
extras_require={
|
||||
'evaluation': [
|
||||
'gsitk'
|
||||
]
|
||||
'evaluation': extra_reqs
|
||||
},
|
||||
include_package_data=True,
|
||||
entry_points={
|
||||
|
@ -1,15 +1,18 @@
|
||||
#!/bin/env python
|
||||
|
||||
import os
|
||||
import sys
|
||||
import pickle
|
||||
import shutil
|
||||
import tempfile
|
||||
|
||||
from unittest import TestCase
|
||||
from unittest import TestCase, skipIf
|
||||
from senpy.models import Results, Entry, EmotionSet, Emotion, Plugins
|
||||
from senpy import plugins
|
||||
from senpy.plugins.conversion.emotion.centroids import CentroidConversion
|
||||
|
||||
import pandas as pd
|
||||
|
||||
|
||||
class ShelfDummyPlugin(plugins.SentimentPlugin, plugins.ShelfMixin):
|
||||
'''Dummy plugin for tests.'''
|
||||
@ -212,7 +215,7 @@ class PluginsTest(TestCase):
|
||||
def input(self, entry, **kwargs):
|
||||
return entry.text
|
||||
|
||||
def predict(self, input):
|
||||
def predict_one(self, input):
|
||||
return 'SIGN' in input
|
||||
|
||||
def output(self, output, entry, **kwargs):
|
||||
@ -242,7 +245,7 @@ class PluginsTest(TestCase):
|
||||
|
||||
mappings = {'happy': 'marl:Positive', 'sad': 'marl:Negative'}
|
||||
|
||||
def predict(self, input, **kwargs):
|
||||
def predict_one(self, input, **kwargs):
|
||||
return 'happy' if ':)' in input else 'sad'
|
||||
|
||||
test_cases = [
|
||||
@ -309,6 +312,42 @@ class PluginsTest(TestCase):
|
||||
res = c._backwards_conversion(e)
|
||||
assert res["onyx:hasEmotionCategory"] == "c2"
|
||||
|
||||
@skipIf(sys.version_info < (3, 0),
|
||||
reason="requires Python3")
|
||||
def test_evaluation(self):
|
||||
testdata = []
|
||||
for i in range(50):
|
||||
testdata.append(["good", 1])
|
||||
for i in range(50):
|
||||
testdata.append(["bad", 0])
|
||||
dataset = pd.DataFrame(testdata, columns=['text', 'polarity'])
|
||||
|
||||
class DummyPlugin(plugins.TextBox):
|
||||
description = 'Plugin to test evaluation'
|
||||
version = 0
|
||||
|
||||
def predict_one(self, input):
|
||||
return 0
|
||||
|
||||
class SmartPlugin(plugins.TextBox):
|
||||
description = 'Plugin to test evaluation'
|
||||
version = 0
|
||||
|
||||
def predict_one(self, input):
|
||||
if input == 'good':
|
||||
return 1
|
||||
return 0
|
||||
|
||||
dpipe = DummyPlugin()
|
||||
results = plugins.evaluate(datasets={'testdata': dataset}, plugins=[dpipe], flatten=True)
|
||||
dumb_metrics = results[0].metrics[0]
|
||||
assert abs(dumb_metrics['accuracy'] - 0.5) < 0.01
|
||||
|
||||
spipe = SmartPlugin()
|
||||
results = plugins.evaluate(datasets={'testdata': dataset}, plugins=[spipe], flatten=True)
|
||||
smart_metrics = results[0].metrics[0]
|
||||
assert abs(smart_metrics['accuracy'] - 1) < 0.01
|
||||
|
||||
|
||||
def make_mini_test(fpath):
|
||||
def mini_test(self):
|
||||
|
Loading…
Reference in New Issue
Block a user