mirror of
https://github.com/gsi-upm/senpy
synced 2024-12-22 21:18:12 +00:00
Add basic evaluation and fix installation
* Merge branch '44-add-basic-evaluation-with-gsitk' * Refactor requirements (add extra-requirements) * Skip evaluation tests in Py2 * Fix installation with PIP * Implement the evaluation service inside the Senpy API * Connect Plugins to GSITK's evaluation module * Add an evaluation method inside the Senpy Context * Add the evaluation models and schemas * Add Evaluation to the Playground, with a table view * Add evaluation tests
This commit is contained in:
commit
55db97cf62
@ -20,8 +20,8 @@ ONBUILD WORKDIR /senpy-plugins/
|
|||||||
|
|
||||||
|
|
||||||
WORKDIR /usr/src/app
|
WORKDIR /usr/src/app
|
||||||
COPY test-requirements.txt requirements.txt /usr/src/app/
|
COPY test-requirements.txt requirements.txt extra-requirements.txt /usr/src/app/
|
||||||
RUN pip install --no-cache-dir --use-wheel -r test-requirements.txt -r requirements.txt
|
RUN pip install --no-cache-dir -r test-requirements.txt -r requirements.txt -r extra-requirements.txt
|
||||||
COPY . /usr/src/app/
|
COPY . /usr/src/app/
|
||||||
RUN pip install --no-cache-dir --no-index --no-deps --editable .
|
RUN pip install --no-cache-dir --no-index --no-deps --editable .
|
||||||
|
|
||||||
|
@ -1,8 +1,11 @@
|
|||||||
What is Senpy?
|
What is Senpy?
|
||||||
--------------
|
--------------
|
||||||
|
|
||||||
Web services can get really complex: data validation, user interaction, formatting, logging., etc.
|
Senpy is a framework for text analysis using Linked Data. There are three main applications of Senpy so far: sentiment and emotion analysis, user profiling and entity recoginition. Annotations and Services are compliant with NIF (NLP Interchange Format).
|
||||||
The figure below summarizes the typical features in an analysis service.
|
|
||||||
|
Senpy aims at providing a framework where analysis modules can be integrated easily as plugins, and providing a core functionality for managing tasks such as data validation, user interaction, formatting, logging, translation to linked data, etc.
|
||||||
|
|
||||||
|
The figure below summarizes the typical features in a text analysis service.
|
||||||
Senpy implements all the common blocks, so developers can focus on what really matters: great analysis algorithms that solve real problems.
|
Senpy implements all the common blocks, so developers can focus on what really matters: great analysis algorithms that solve real problems.
|
||||||
|
|
||||||
.. image:: senpy-framework.png
|
.. image:: senpy-framework.png
|
||||||
|
@ -1,8 +1,24 @@
|
|||||||
Vocabularies and model
|
Vocabularies and model
|
||||||
======================
|
======================
|
||||||
|
|
||||||
The model used in Senpy is based on the following vocabularies:
|
The model used in Senpy is based on NIF 2.0 [1], which defines a semantic format and API for improving interoperability among natural language processing services.
|
||||||
|
|
||||||
* Marl, a vocabulary designed to annotate and describe subjetive opinions expressed on the web or in information systems.
|
Senpy has been applied to sentiment and emotion analysis services using the following vocabularies:
|
||||||
* Onyx, which is built one the same principles as Marl to annotate and describe emotions, and provides interoperability with Emotion Markup Language.
|
|
||||||
* NIF 2.0, which defines a semantic format and APO for improving interoperability among natural language processing services
|
* Marl [2,6], a vocabulary designed to annotate and describe subjetive opinions expressed on the web or in information systems.
|
||||||
|
* Onyx [3,5], which is built one the same principles as Marl to annotate and describe emotions, and provides interoperability with Emotion Markup Language.
|
||||||
|
|
||||||
|
An overview of the vocabularies and their use can be found in [4].
|
||||||
|
|
||||||
|
|
||||||
|
[1] Guidelines for developing NIF-based NLP services, Final Community Group Report 22 December 2015 Available at: https://www.w3.org/2015/09/bpmlod-reports/nif-based-nlp-webservices/
|
||||||
|
|
||||||
|
[2] Marl Ontology Specification, available at http://www.gsi.dit.upm.es/ontologies/marl/
|
||||||
|
|
||||||
|
[3] Onyx Ontology Specification, available at http://www.gsi.dit.upm.es/ontologies/onyx/
|
||||||
|
|
||||||
|
[4] Iglesias, C. A., Sánchez-Rada, J. F., Vulcu, G., & Buitelaar, P. (2017). Linked Data Models for Sentiment and Emotion Analysis in Social Networks. In Sentiment Analysis in Social Networks (pp. 49-69).
|
||||||
|
|
||||||
|
[5] Sánchez-Rada, J. F., & Iglesias, C. A. (2016). Onyx: A linked data approach to emotion representation. Information Processing & Management, 52(1), 99-114.
|
||||||
|
|
||||||
|
[6] Westerski, A., Iglesias Fernandez, C. A., & Tapia Rico, F. (2011). Linked opinions: Describing sentiments on the structured web of data.
|
||||||
|
@ -18,7 +18,7 @@ class BasicBox(SentimentBox):
|
|||||||
'default': 'marl:Neutral'
|
'default': 'marl:Neutral'
|
||||||
}
|
}
|
||||||
|
|
||||||
def predict(self, input):
|
def predict_one(self, input):
|
||||||
output = basic.get_polarity(input)
|
output = basic.get_polarity(input)
|
||||||
return self.mappings.get(output, self.mappings['default'])
|
return self.mappings.get(output, self.mappings['default'])
|
||||||
|
|
||||||
|
@ -18,7 +18,7 @@ class Basic(MappingMixin, SentimentBox):
|
|||||||
'default': 'marl:Neutral'
|
'default': 'marl:Neutral'
|
||||||
}
|
}
|
||||||
|
|
||||||
def predict(self, input):
|
def predict_one(self, input):
|
||||||
return basic.get_polarity(input)
|
return basic.get_polarity(input)
|
||||||
|
|
||||||
test_cases = [{
|
test_cases = [{
|
||||||
|
@ -18,7 +18,7 @@ class PipelineSentiment(MappingMixin, SentimentBox):
|
|||||||
-1: 'marl:Negative'
|
-1: 'marl:Negative'
|
||||||
}
|
}
|
||||||
|
|
||||||
def predict(self, input):
|
def predict_one(self, input):
|
||||||
return pipeline.predict([input, ])[0]
|
return pipeline.predict([input, ])[0]
|
||||||
|
|
||||||
test_cases = [
|
test_cases = [
|
||||||
|
1
extra-requirements.txt
Normal file
1
extra-requirements.txt
Normal file
@ -0,0 +1 @@
|
|||||||
|
gsitk
|
15
senpy/api.py
15
senpy/api.py
@ -53,6 +53,21 @@ API_PARAMS = {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
EVAL_PARAMS = {
|
||||||
|
"algorithm": {
|
||||||
|
"aliases": ["plug", "p", "plugins", "algorithms", 'algo', 'a', 'plugin'],
|
||||||
|
"description": "Plugins to be evaluated",
|
||||||
|
"required": True,
|
||||||
|
"help": "See activated plugins in /plugins"
|
||||||
|
},
|
||||||
|
"dataset": {
|
||||||
|
"aliases": ["datasets", "data", "d"],
|
||||||
|
"description": "Datasets to be evaluated",
|
||||||
|
"required": True,
|
||||||
|
"help": "See avalaible datasets in /datasets"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
PLUGINS_PARAMS = {
|
PLUGINS_PARAMS = {
|
||||||
"plugin_type": {
|
"plugin_type": {
|
||||||
"@id": "pluginType",
|
"@id": "pluginType",
|
||||||
|
@ -19,7 +19,7 @@ Blueprints for Senpy
|
|||||||
"""
|
"""
|
||||||
from flask import (Blueprint, request, current_app, render_template, url_for,
|
from flask import (Blueprint, request, current_app, render_template, url_for,
|
||||||
jsonify)
|
jsonify)
|
||||||
from .models import Error, Response, Help, Plugins, read_schema
|
from .models import Error, Response, Help, Plugins, read_schema, Datasets
|
||||||
from . import api
|
from . import api
|
||||||
from .version import __version__
|
from .version import __version__
|
||||||
from functools import wraps
|
from functools import wraps
|
||||||
@ -133,6 +133,17 @@ def api_root():
|
|||||||
req = api.parse_call(request.parameters)
|
req = api.parse_call(request.parameters)
|
||||||
return current_app.senpy.analyse(req)
|
return current_app.senpy.analyse(req)
|
||||||
|
|
||||||
|
@api_blueprint.route('/evaluate/', methods=['POST', 'GET'])
|
||||||
|
@basic_api
|
||||||
|
def evaluate():
|
||||||
|
if request.parameters['help']:
|
||||||
|
dic = dict(api.EVAL_PARAMS)
|
||||||
|
response = Help(parameters=dic)
|
||||||
|
return response
|
||||||
|
else:
|
||||||
|
params = api.parse_params(request.parameters, api.EVAL_PARAMS)
|
||||||
|
response = current_app.senpy.evaluate(params)
|
||||||
|
return response
|
||||||
|
|
||||||
@api_blueprint.route('/plugins/', methods=['POST', 'GET'])
|
@api_blueprint.route('/plugins/', methods=['POST', 'GET'])
|
||||||
@basic_api
|
@basic_api
|
||||||
@ -150,3 +161,12 @@ def plugins():
|
|||||||
def plugin(plugin=None):
|
def plugin(plugin=None):
|
||||||
sp = current_app.senpy
|
sp = current_app.senpy
|
||||||
return sp.get_plugin(plugin)
|
return sp.get_plugin(plugin)
|
||||||
|
|
||||||
|
|
||||||
|
@api_blueprint.route('/datasets/', methods=['POST','GET'])
|
||||||
|
@basic_api
|
||||||
|
def datasets():
|
||||||
|
sp = current_app.senpy
|
||||||
|
datasets = sp.datasets
|
||||||
|
dic = Datasets(datasets = list(datasets.values()))
|
||||||
|
return dic
|
@ -12,10 +12,17 @@ class Client(object):
|
|||||||
def analyse(self, input, method='GET', **kwargs):
|
def analyse(self, input, method='GET', **kwargs):
|
||||||
return self.request('/', method=method, input=input, **kwargs)
|
return self.request('/', method=method, input=input, **kwargs)
|
||||||
|
|
||||||
|
def evaluate(self, input, method='GET', **kwargs):
|
||||||
|
return self.request('/evaluate', method = method, input=input, **kwargs)
|
||||||
|
|
||||||
def plugins(self, *args, **kwargs):
|
def plugins(self, *args, **kwargs):
|
||||||
resp = self.request(path='/plugins').plugins
|
resp = self.request(path='/plugins').plugins
|
||||||
return {p.name: p for p in resp}
|
return {p.name: p for p in resp}
|
||||||
|
|
||||||
|
def datasets(self):
|
||||||
|
resp = self.request(path='/datasets').datasets
|
||||||
|
return {d.name: d for d in resp}
|
||||||
|
|
||||||
def request(self, path=None, method='GET', **params):
|
def request(self, path=None, method='GET', **params):
|
||||||
url = '{}{}'.format(self.endpoint, path)
|
url = '{}{}'.format(self.endpoint, path)
|
||||||
response = requests.request(method=method, url=url, params=params)
|
response = requests.request(method=method, url=url, params=params)
|
||||||
|
@ -6,8 +6,8 @@ from future import standard_library
|
|||||||
standard_library.install_aliases()
|
standard_library.install_aliases()
|
||||||
|
|
||||||
from . import plugins, api
|
from . import plugins, api
|
||||||
from .plugins import Plugin
|
from .plugins import Plugin, evaluate
|
||||||
from .models import Error
|
from .models import Error, AggregatedEvaluation
|
||||||
from .blueprints import api_blueprint, demo_blueprint, ns_blueprint
|
from .blueprints import api_blueprint, demo_blueprint, ns_blueprint
|
||||||
|
|
||||||
from threading import Thread
|
from threading import Thread
|
||||||
@ -17,12 +17,19 @@ import copy
|
|||||||
import errno
|
import errno
|
||||||
import logging
|
import logging
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
try:
|
||||||
|
from gsitk.datasets.datasets import DatasetManager
|
||||||
|
GSITK_AVAILABLE = True
|
||||||
|
except ImportError:
|
||||||
|
logger.warn('GSITK is not installed. Some functions will be unavailable.')
|
||||||
|
GSITK_AVAILABLE = False
|
||||||
|
|
||||||
|
|
||||||
class Senpy(object):
|
class Senpy(object):
|
||||||
""" Default Senpy extension for Flask """
|
""" Default Senpy extension for Flask """
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
app=None,
|
app=None,
|
||||||
plugin_folder=".",
|
plugin_folder=".",
|
||||||
@ -181,6 +188,55 @@ class Senpy(object):
|
|||||||
results.analysis = [i['plugin'].id for i in results.analysis]
|
results.analysis = [i['plugin'].id for i in results.analysis]
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
def _get_datasets(self, request):
|
||||||
|
if not self.datasets:
|
||||||
|
raise Error(
|
||||||
|
status=404,
|
||||||
|
message=("No datasets found."
|
||||||
|
" Please verify DatasetManager"))
|
||||||
|
datasets_name = request.parameters.get('dataset', None).split(',')
|
||||||
|
for dataset in datasets_name:
|
||||||
|
if dataset not in self.datasets:
|
||||||
|
logger.debug(("The dataset '{}' is not valid\n"
|
||||||
|
"Valid datasets: {}").format(dataset,
|
||||||
|
self.datasets.keys()))
|
||||||
|
raise Error(
|
||||||
|
status=404,
|
||||||
|
message="The dataset '{}' is not valid".format(dataset))
|
||||||
|
dm = DatasetManager()
|
||||||
|
datasets = dm.prepare_datasets(datasets_name)
|
||||||
|
return datasets
|
||||||
|
|
||||||
|
@property
|
||||||
|
def datasets(self):
|
||||||
|
if not GSITK_AVAILABLE:
|
||||||
|
raise Exception('GSITK is not available. Install it to use this function.')
|
||||||
|
self._dataset_list = {}
|
||||||
|
dm = DatasetManager()
|
||||||
|
for item in dm.get_datasets():
|
||||||
|
for key in item:
|
||||||
|
if key in self._dataset_list:
|
||||||
|
continue
|
||||||
|
properties = item[key]
|
||||||
|
properties['@id'] = key
|
||||||
|
self._dataset_list[key] = properties
|
||||||
|
return self._dataset_list
|
||||||
|
|
||||||
|
def evaluate(self, params):
|
||||||
|
if not GSITK_AVAILABLE:
|
||||||
|
raise Exception('GSITK is not available. Install it to use this function.')
|
||||||
|
logger.debug("evaluating request: {}".format(params))
|
||||||
|
results = AggregatedEvaluation()
|
||||||
|
results.parameters = params
|
||||||
|
datasets = self._get_datasets(results)
|
||||||
|
plugins = self._get_plugins(results)
|
||||||
|
for eval in evaluate(plugins, datasets):
|
||||||
|
results.evaluations.append(eval)
|
||||||
|
if 'with_parameters' not in results.parameters:
|
||||||
|
del results.parameters
|
||||||
|
logger.debug("Returning evaluation result: {}".format(results))
|
||||||
|
return results
|
||||||
|
|
||||||
def _conversion_candidates(self, fromModel, toModel):
|
def _conversion_candidates(self, fromModel, toModel):
|
||||||
candidates = self.plugins(plugin_type='emotionConversionPlugin')
|
candidates = self.plugins(plugin_type='emotionConversionPlugin')
|
||||||
for candidate in candidates:
|
for candidate in candidates:
|
||||||
|
@ -335,5 +335,11 @@ for i in [
|
|||||||
'results',
|
'results',
|
||||||
'sentimentPlugin',
|
'sentimentPlugin',
|
||||||
'suggestion',
|
'suggestion',
|
||||||
|
'aggregatedEvaluation',
|
||||||
|
'evaluation',
|
||||||
|
'metric',
|
||||||
|
'dataset',
|
||||||
|
'datasets',
|
||||||
|
|
||||||
]:
|
]:
|
||||||
_add_class_from_schema(i)
|
_add_class_from_schema(i)
|
||||||
|
@ -19,11 +19,22 @@ import importlib
|
|||||||
import yaml
|
import yaml
|
||||||
import threading
|
import threading
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
from .. import models, utils
|
from .. import models, utils
|
||||||
from .. import api
|
from .. import api
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
try:
|
||||||
|
from gsitk.evaluation.evaluation import Evaluation as Eval
|
||||||
|
from sklearn.pipeline import Pipeline
|
||||||
|
GSITK_AVAILABLE = True
|
||||||
|
except ImportError:
|
||||||
|
logger.warn('GSITK is not installed. Some functions will be unavailable.')
|
||||||
|
GSITK_AVAILABLE = False
|
||||||
|
|
||||||
|
|
||||||
class PluginMeta(models.BaseMeta):
|
class PluginMeta(models.BaseMeta):
|
||||||
_classes = {}
|
_classes = {}
|
||||||
@ -251,7 +262,7 @@ class Box(AnalysisPlugin):
|
|||||||
|
|
||||||
.. code-block::
|
.. code-block::
|
||||||
|
|
||||||
entry --> input() --> predict() --> output() --> entry'
|
entry --> input() --> predict_one() --> output() --> entry'
|
||||||
|
|
||||||
|
|
||||||
In other words: their ``input`` method convers a query (entry and a set of parameters) into
|
In other words: their ``input`` method convers a query (entry and a set of parameters) into
|
||||||
@ -267,15 +278,33 @@ class Box(AnalysisPlugin):
|
|||||||
'''Transforms the results of the black box into an entry'''
|
'''Transforms the results of the black box into an entry'''
|
||||||
return output
|
return output
|
||||||
|
|
||||||
def predict(self, input):
|
def predict_one(self, input):
|
||||||
raise NotImplementedError('You should define the behavior of this plugin')
|
raise NotImplementedError('You should define the behavior of this plugin')
|
||||||
|
|
||||||
def analyse_entries(self, entries, params):
|
def analyse_entries(self, entries, params):
|
||||||
for entry in entries:
|
for entry in entries:
|
||||||
input = self.input(entry=entry, params=params)
|
input = self.input(entry=entry, params=params)
|
||||||
results = self.predict(input=input)
|
results = self.predict_one(input=input)
|
||||||
yield self.output(output=results, entry=entry, params=params)
|
yield self.output(output=results, entry=entry, params=params)
|
||||||
|
|
||||||
|
def fit(self, X=None, y=None):
|
||||||
|
return self
|
||||||
|
|
||||||
|
def transform(self, X):
|
||||||
|
return np.array([self.predict_one(x) for x in X])
|
||||||
|
|
||||||
|
def predict(self, X):
|
||||||
|
return self.transform(X)
|
||||||
|
|
||||||
|
def fit_transform(self, X, y):
|
||||||
|
self.fit(X, y)
|
||||||
|
return self.transform(X)
|
||||||
|
|
||||||
|
def as_pipe(self):
|
||||||
|
pipe = Pipeline([('plugin', self)])
|
||||||
|
pipe.name = self.name
|
||||||
|
return pipe
|
||||||
|
|
||||||
|
|
||||||
class TextBox(Box):
|
class TextBox(Box):
|
||||||
'''A black box plugin that takes only text as input'''
|
'''A black box plugin that takes only text as input'''
|
||||||
@ -438,7 +467,7 @@ def install_deps(*plugins):
|
|||||||
for info in plugins:
|
for info in plugins:
|
||||||
requirements = info.get('requirements', [])
|
requirements = info.get('requirements', [])
|
||||||
if requirements:
|
if requirements:
|
||||||
pip_args = [sys.executable, '-m', 'pip', 'install', '--use-wheel']
|
pip_args = [sys.executable, '-m', 'pip', 'install']
|
||||||
for req in requirements:
|
for req in requirements:
|
||||||
pip_args.append(req)
|
pip_args.append(req)
|
||||||
logger.info('Installing requirements: ' + str(requirements))
|
logger.info('Installing requirements: ' + str(requirements))
|
||||||
@ -560,3 +589,50 @@ def _from_loaded_module(module, info=None, **kwargs):
|
|||||||
yield cls(info=info, **kwargs)
|
yield cls(info=info, **kwargs)
|
||||||
for instance in _instances_in_module(module):
|
for instance in _instances_in_module(module):
|
||||||
yield instance
|
yield instance
|
||||||
|
|
||||||
|
|
||||||
|
def evaluate(plugins, datasets, **kwargs):
|
||||||
|
if not GSITK_AVAILABLE:
|
||||||
|
raise Exception('GSITK is not available. Install it to use this function.')
|
||||||
|
|
||||||
|
ev = Eval(tuples=None,
|
||||||
|
datasets=datasets,
|
||||||
|
pipelines=[plugin.as_pipe() for plugin in plugins])
|
||||||
|
ev.evaluate()
|
||||||
|
results = ev.results
|
||||||
|
evaluations = evaluations_to_JSONLD(results, **kwargs)
|
||||||
|
return evaluations
|
||||||
|
|
||||||
|
|
||||||
|
def evaluations_to_JSONLD(results, flatten=False):
|
||||||
|
'''
|
||||||
|
Map the evaluation results to a JSONLD scheme
|
||||||
|
'''
|
||||||
|
|
||||||
|
evaluations = list()
|
||||||
|
metric_names = ['accuracy', 'precision_macro', 'recall_macro',
|
||||||
|
'f1_macro', 'f1_weighted', 'f1_micro', 'f1_macro']
|
||||||
|
|
||||||
|
for index, row in results.iterrows():
|
||||||
|
evaluation = models.Evaluation()
|
||||||
|
if row.get('CV', True):
|
||||||
|
evaluation['@type'] = ['StaticCV', 'Evaluation']
|
||||||
|
evaluation.evaluatesOn = row['Dataset']
|
||||||
|
evaluation.evaluates = row['Model']
|
||||||
|
i = 0
|
||||||
|
if flatten:
|
||||||
|
metric = models.Metric()
|
||||||
|
for name in metric_names:
|
||||||
|
metric[name] = row[name]
|
||||||
|
evaluation.metrics.append(metric)
|
||||||
|
else:
|
||||||
|
# We should probably discontinue this representation
|
||||||
|
for name in metric_names:
|
||||||
|
metric = models.Metric()
|
||||||
|
metric['@id'] = 'Metric' + str(i)
|
||||||
|
metric['@type'] = name.capitalize()
|
||||||
|
metric.value = row[name]
|
||||||
|
evaluation.metrics.append(metric)
|
||||||
|
i += 1
|
||||||
|
evaluations.append(evaluation)
|
||||||
|
return evaluations
|
||||||
|
38
senpy/schemas/aggregatedEvaluation.json
Normal file
38
senpy/schemas/aggregatedEvaluation.json
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
{
|
||||||
|
"$schema": "http://json-schema.org/draft-04/schema#",
|
||||||
|
"allOf": [
|
||||||
|
{"$ref": "response.json"},
|
||||||
|
{
|
||||||
|
"title": "AggregatedEvaluation",
|
||||||
|
"description": "The results of the evaluation",
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"@context": {
|
||||||
|
"$ref": "context.json"
|
||||||
|
},
|
||||||
|
"@type": {
|
||||||
|
"default": "AggregatedEvaluation"
|
||||||
|
},
|
||||||
|
"@id": {
|
||||||
|
"description": "ID of the aggregated evaluation",
|
||||||
|
"type": "string"
|
||||||
|
},
|
||||||
|
"evaluations": {
|
||||||
|
"default": [],
|
||||||
|
"type": "array",
|
||||||
|
"items": {
|
||||||
|
"anyOf": [
|
||||||
|
{
|
||||||
|
"$ref": "evaluation.json"
|
||||||
|
},{
|
||||||
|
"type": "string"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
},
|
||||||
|
"required": ["@id", "evaluations"]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
29
senpy/schemas/dataset.json
Normal file
29
senpy/schemas/dataset.json
Normal file
@ -0,0 +1,29 @@
|
|||||||
|
{
|
||||||
|
"$schema": "http://json-schema.org/draft-04/schema#",
|
||||||
|
"name": "Dataset",
|
||||||
|
"properties": {
|
||||||
|
"@id": {
|
||||||
|
"type": "string"
|
||||||
|
},
|
||||||
|
"name": {
|
||||||
|
"type": "string"
|
||||||
|
},
|
||||||
|
"compression": {
|
||||||
|
"type": "string"
|
||||||
|
},
|
||||||
|
"expected_bytes": {
|
||||||
|
"type": "int"
|
||||||
|
},
|
||||||
|
"filename": {
|
||||||
|
"description": "Name of the dataset",
|
||||||
|
"type": "string"
|
||||||
|
},
|
||||||
|
"url": {
|
||||||
|
"description": "Classifier or plugin evaluated",
|
||||||
|
"type": "string"
|
||||||
|
},
|
||||||
|
"stats": {
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"required": ["@id"]
|
||||||
|
}
|
18
senpy/schemas/datasets.json
Normal file
18
senpy/schemas/datasets.json
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
{
|
||||||
|
"$schema": "http://json-schema.org/draft-04/schema#",
|
||||||
|
"allOf": [
|
||||||
|
{"$ref": "response.json"},
|
||||||
|
{
|
||||||
|
"required": ["datasets"],
|
||||||
|
"properties": {
|
||||||
|
"datasets": {
|
||||||
|
"type": "array",
|
||||||
|
"default": [],
|
||||||
|
"items": {
|
||||||
|
"$ref": "dataset.json"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
@ -41,5 +41,20 @@
|
|||||||
},
|
},
|
||||||
"Response": {
|
"Response": {
|
||||||
"$ref": "response.json"
|
"$ref": "response.json"
|
||||||
|
},
|
||||||
|
"AggregatedEvaluation": {
|
||||||
|
"$ref": "aggregatedEvaluation.json"
|
||||||
|
},
|
||||||
|
"Evaluation": {
|
||||||
|
"$ref": "evaluation.json"
|
||||||
|
},
|
||||||
|
"Metric": {
|
||||||
|
"$ref": "metric.json"
|
||||||
|
},
|
||||||
|
"Dataset": {
|
||||||
|
"$ref": "dataset.json"
|
||||||
|
},
|
||||||
|
"Datasets": {
|
||||||
|
"$ref": "datasets.json"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
28
senpy/schemas/evaluation.json
Normal file
28
senpy/schemas/evaluation.json
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
{
|
||||||
|
"$schema": "http://json-schema.org/draft-04/schema#",
|
||||||
|
"name": "Evalation",
|
||||||
|
"properties": {
|
||||||
|
"@id": {
|
||||||
|
"type": "string"
|
||||||
|
},
|
||||||
|
"@type": {
|
||||||
|
"type": "array",
|
||||||
|
"default": "Evaluation"
|
||||||
|
|
||||||
|
},
|
||||||
|
"metrics": {
|
||||||
|
"type": "array",
|
||||||
|
"items": {"$ref": "metric.json" },
|
||||||
|
"default": []
|
||||||
|
},
|
||||||
|
"evaluatesOn": {
|
||||||
|
"description": "Name of the dataset evaluated ",
|
||||||
|
"type": "string"
|
||||||
|
},
|
||||||
|
"evaluates": {
|
||||||
|
"description": "Classifier or plugin evaluated",
|
||||||
|
"type": "string"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"required": ["@id", "metrics"]
|
||||||
|
}
|
24
senpy/schemas/metric.json
Normal file
24
senpy/schemas/metric.json
Normal file
@ -0,0 +1,24 @@
|
|||||||
|
{
|
||||||
|
"$schema": "http://json-schema.org/draft-04/schema#",
|
||||||
|
"properties": {
|
||||||
|
"@id": {
|
||||||
|
"type": "string"
|
||||||
|
},
|
||||||
|
"@type": {
|
||||||
|
"type": "string"
|
||||||
|
},
|
||||||
|
"maxValue": {
|
||||||
|
"type": "number"
|
||||||
|
},
|
||||||
|
"minValue": {
|
||||||
|
"type": "number"
|
||||||
|
},
|
||||||
|
"value": {
|
||||||
|
"type": "number"
|
||||||
|
},
|
||||||
|
"deviation": {
|
||||||
|
"type": "number"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"required": ["@id"]
|
||||||
|
}
|
@ -33,6 +33,10 @@ function get_plugins(response){
|
|||||||
plugins = response.plugins;
|
plugins = response.plugins;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
function get_datasets(response){
|
||||||
|
datasets = response.datasets
|
||||||
|
}
|
||||||
|
|
||||||
function group_plugins(){
|
function group_plugins(){
|
||||||
for (r in plugins){
|
for (r in plugins){
|
||||||
ptype = plugins[r]['@type'];
|
ptype = plugins[r]['@type'];
|
||||||
@ -77,7 +81,10 @@ function draw_plugins_selection(){
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
html += "</optgroup>"
|
html += "</optgroup>"
|
||||||
document.getElementById('plugins').innerHTML = html;
|
// Two elements with plugin class
|
||||||
|
// One from the evaluate tab and another one from the analyse tab
|
||||||
|
document.getElementsByClassName('plugin')[0].innerHTML = html;
|
||||||
|
document.getElementsByClassName('plugin')[1].innerHTML = html;
|
||||||
}
|
}
|
||||||
|
|
||||||
function draw_plugins_list(){
|
function draw_plugins_list(){
|
||||||
@ -98,15 +105,29 @@ function draw_plugins_list(){
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
function draw_datasets(){
|
||||||
|
html = "";
|
||||||
|
repeated_html = "<input class=\"checks-datasets\" type=\"checkbox\" value=\"";
|
||||||
|
for (dataset in datasets){
|
||||||
|
html += repeated_html+datasets[dataset]["@id"]+"\">"+datasets[dataset]["@id"];
|
||||||
|
html += "<br>"
|
||||||
|
}
|
||||||
|
document.getElementById("datasets").innerHTML = html;
|
||||||
|
}
|
||||||
|
|
||||||
$(document).ready(function() {
|
$(document).ready(function() {
|
||||||
var response = JSON.parse($.ajax({type: "GET", url: "/api/plugins/" , async: false}).responseText);
|
var response = JSON.parse($.ajax({type: "GET", url: "/api/plugins/" , async: false}).responseText);
|
||||||
defaultPlugin= JSON.parse($.ajax({type: "GET", url: "/api/plugins/default" , async: false}).responseText);
|
defaultPlugin= JSON.parse($.ajax({type: "GET", url: "/api/plugins/default" , async: false}).responseText);
|
||||||
|
var response2 = JSON.parse($.ajax({type: "GET", url: "/api/datasets/" , async: false}).responseText);
|
||||||
|
|
||||||
get_plugins(response);
|
get_plugins(response);
|
||||||
get_default_parameters();
|
get_default_parameters();
|
||||||
|
get_datasets(response2);
|
||||||
|
|
||||||
draw_plugins_list();
|
draw_plugins_list();
|
||||||
draw_plugins_selection();
|
draw_plugins_selection();
|
||||||
draw_parameters();
|
draw_parameters();
|
||||||
|
draw_datasets();
|
||||||
|
|
||||||
$(window).on('hashchange', hashchanged);
|
$(window).on('hashchange', hashchanged);
|
||||||
hashchanged();
|
hashchanged();
|
||||||
@ -129,7 +150,7 @@ function draw_default_parameters(){
|
|||||||
}
|
}
|
||||||
|
|
||||||
function draw_extra_parameters(){
|
function draw_extra_parameters(){
|
||||||
var plugin = document.getElementById("plugins").options[document.getElementById("plugins").selectedIndex].value;
|
var plugin = document.getElementsByClassName('plugin')[0].options[document.getElementsByClassName('plugin')[0].selectedIndex].value;
|
||||||
get_parameters();
|
get_parameters();
|
||||||
|
|
||||||
var extra_params = document.getElementById("extra_params");
|
var extra_params = document.getElementById("extra_params");
|
||||||
@ -240,13 +261,16 @@ function add_param(key, value){
|
|||||||
return "&"+key+"="+value;
|
return "&"+key+"="+value;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function load_JSON(){
|
function load_JSON(){
|
||||||
url = "/api";
|
url = "/api";
|
||||||
var container = document.getElementById('results');
|
var container = document.getElementById('results');
|
||||||
var rawcontainer = document.getElementById("jsonraw");
|
var rawcontainer = document.getElementById("jsonraw");
|
||||||
rawcontainer.innerHTML = '';
|
rawcontainer.innerHTML = '';
|
||||||
container.innerHTML = '';
|
container.innerHTML = '';
|
||||||
var plugin = document.getElementById("plugins").options[document.getElementById("plugins").selectedIndex].value;
|
|
||||||
|
var plugin = document.getElementsByClassName("plugin")[0].options[document.getElementsByClassName("plugin")[0].selectedIndex].value;
|
||||||
|
|
||||||
var input = encodeURIComponent(document.getElementById("input").value);
|
var input = encodeURIComponent(document.getElementById("input").value);
|
||||||
url += "?algo="+plugin+"&i="+input
|
url += "?algo="+plugin+"&i="+input
|
||||||
|
|
||||||
@ -278,3 +302,85 @@ function load_JSON(){
|
|||||||
// location.hash = 'raw';
|
// location.hash = 'raw';
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
function get_datasets_from_checkbox(){
|
||||||
|
var checks = document.getElementsByClassName("checks-datasets");
|
||||||
|
|
||||||
|
datasets = "";
|
||||||
|
for (var i = 0; i < checks.length; i++){
|
||||||
|
if (checks[i].checked){
|
||||||
|
datasets += checks[i].value + ",";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
datasets = datasets.slice(0, -1);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
function create_body_metrics(evaluations){
|
||||||
|
var new_tbody = document.createElement('tbody')
|
||||||
|
var metric_html = ""
|
||||||
|
for (var eval in evaluations){
|
||||||
|
metric_html += "<tr><th>"+evaluations[eval].evaluates+"</th><th>"+evaluations[eval].evaluatesOn+"</th>";
|
||||||
|
for (var metric in evaluations[eval].metrics){
|
||||||
|
metric_html += "<th>"+parseFloat(evaluations[eval].metrics[metric].value.toFixed(4))+"</th>";
|
||||||
|
}
|
||||||
|
metric_html += "</tr>";
|
||||||
|
}
|
||||||
|
new_tbody.innerHTML = metric_html
|
||||||
|
return new_tbody
|
||||||
|
}
|
||||||
|
|
||||||
|
function evaluate_JSON(){
|
||||||
|
|
||||||
|
url = "/api/evaluate";
|
||||||
|
|
||||||
|
var container = document.getElementById('results_eval');
|
||||||
|
var rawcontainer = document.getElementById('jsonraw_eval');
|
||||||
|
var table = document.getElementById("eval_table");
|
||||||
|
|
||||||
|
rawcontainer.innerHTML = "";
|
||||||
|
container.innerHTML = "";
|
||||||
|
|
||||||
|
var plugin = document.getElementsByClassName("plugin")[0].options[document.getElementsByClassName("plugin")[0].selectedIndex].value;
|
||||||
|
|
||||||
|
get_datasets_from_checkbox();
|
||||||
|
|
||||||
|
url += "?algo="+plugin+"&dataset="+datasets
|
||||||
|
|
||||||
|
var response = $.ajax({type: "GET", url: url , async: false, dataType: 'json'}).responseText;
|
||||||
|
rawcontainer.innerHTML = replaceURLWithHTMLLinks(response);
|
||||||
|
|
||||||
|
document.getElementById("input_request_eval").innerHTML = "<a href='"+url+"'>"+url+"</a>"
|
||||||
|
document.getElementById("evaluate-div").style.display = 'block';
|
||||||
|
|
||||||
|
try {
|
||||||
|
response = JSON.parse(response);
|
||||||
|
var options = {
|
||||||
|
mode: 'view'
|
||||||
|
};
|
||||||
|
|
||||||
|
//Control the single response results
|
||||||
|
if (!(Array.isArray(response.evaluations))){
|
||||||
|
response.evaluations = [response.evaluations]
|
||||||
|
}
|
||||||
|
|
||||||
|
new_tbody = create_body_metrics(response.evaluations)
|
||||||
|
table.replaceChild(new_tbody, table.lastElementChild)
|
||||||
|
|
||||||
|
var editor = new JSONEditor(container, options, response);
|
||||||
|
editor.expandAll();
|
||||||
|
// $('#results-div a[href="#viewer"]').tab('show');
|
||||||
|
$('#evaluate-div a[href="#evaluate-table"]').click();
|
||||||
|
// location.hash = 'raw';
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
catch(err){
|
||||||
|
console.log("Error decoding JSON (got turtle?)");
|
||||||
|
$('#evaluate-div a[href="#evaluate-raw"]').click();
|
||||||
|
// location.hash = 'raw';
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
}
|
@ -32,6 +32,8 @@
|
|||||||
<ul class="nav nav-tabs" role="tablist">
|
<ul class="nav nav-tabs" role="tablist">
|
||||||
<li role="presentation" ><a class="active" href="#about">About</a></li>
|
<li role="presentation" ><a class="active" href="#about">About</a></li>
|
||||||
<li role="presentation"class="active"><a class="active" href="#test">Test it</a></li>
|
<li role="presentation"class="active"><a class="active" href="#test">Test it</a></li>
|
||||||
|
<li role="presentation"><a class="active" href="#evaluate">Evaluate Plugins</a></li>
|
||||||
|
|
||||||
</ul>
|
</ul>
|
||||||
|
|
||||||
<div class="tab-content">
|
<div class="tab-content">
|
||||||
@ -54,6 +56,7 @@
|
|||||||
<ul>
|
<ul>
|
||||||
<li>List all available plugins: <a href="/api/plugins">/api/plugins</a></li>
|
<li>List all available plugins: <a href="/api/plugins">/api/plugins</a></li>
|
||||||
<li>Get information about the default plugin: <a href="/api/plugins/default">/api/plugins/default</a></li>
|
<li>Get information about the default plugin: <a href="/api/plugins/default">/api/plugins/default</a></li>
|
||||||
|
<li>List all available datasets: <a href="/api/datasets">/api/datasets</a></li>
|
||||||
<li>Download the JSON-LD context used: <a href="/api/contexts/Results.jsonld">/api/contexts/Results.jsonld</a></li>
|
<li>Download the JSON-LD context used: <a href="/api/contexts/Results.jsonld">/api/contexts/Results.jsonld</a></li>
|
||||||
</ul>
|
</ul>
|
||||||
|
|
||||||
@ -95,7 +98,7 @@ I cannot believe it!</textarea>
|
|||||||
</div>
|
</div>
|
||||||
<div>
|
<div>
|
||||||
<label>Select the plugin:</label>
|
<label>Select the plugin:</label>
|
||||||
<select id="plugins" name="plugins" onchange="draw_extra_parameters()">
|
<select id="plugins" name="plugins" class=plugin onchange="draw_extra_parameters()">
|
||||||
</select>
|
</select>
|
||||||
</div>
|
</div>
|
||||||
<!-- PARAMETERS -->
|
<!-- PARAMETERS -->
|
||||||
@ -151,6 +154,70 @@ I cannot believe it!</textarea>
|
|||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
<div class="tab-pane" id="evaluate">
|
||||||
|
<div class="well">
|
||||||
|
<form id="form" class="container" onsubmit="return getPlugins();" accept-charset="utf-8">
|
||||||
|
<div>
|
||||||
|
<label>Select the plugin:</label>
|
||||||
|
<select id="plugins-eval" name="plugins-eval" class=plugin onchange="draw_extra_parameters()">
|
||||||
|
</select>
|
||||||
|
</div>
|
||||||
|
<div>
|
||||||
|
<label>Select the datasets:</label>
|
||||||
|
<div id="datasets" name="datasets" >
|
||||||
|
</select>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<a id="preview" class="btn btn-lg btn-primary" onclick="evaluate_JSON()">Evaluate Plugin!</a>
|
||||||
|
<!--<button id="visualise" name="type" type="button">Visualise!</button>-->
|
||||||
|
</form>
|
||||||
|
</div>
|
||||||
|
<span id="input_request_eval"></span>
|
||||||
|
<div id="evaluate-div">
|
||||||
|
<ul class="nav nav-tabs" role="tablist">
|
||||||
|
<li role="presentation" class="active"><a data-toggle="tab" class="active" href="#evaluate-viewer">Viewer</a></li>
|
||||||
|
<li role="presentation"><a data-toggle="tab" class="active" href="#evaluate-raw">Raw</a></li>
|
||||||
|
<li role="presentation"><a data-toggle="tab" class="active" href="#evaluate-table">Table</a></li>
|
||||||
|
</ul>
|
||||||
|
<div class="tab-content" id="evaluate-container">
|
||||||
|
|
||||||
|
<div class="tab-pane active" id="evaluate-viewer">
|
||||||
|
<div id="content">
|
||||||
|
<pre id="results_eval" class="results_eval"></pre>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<div class="tab-pane" id="evaluate-raw">
|
||||||
|
<div id="content">
|
||||||
|
<pre id="jsonraw_eval" class="results_eval"></pre>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
<div class="tab-pane" id="evaluate-table">
|
||||||
|
<table id="eval_table" class="table table-condensed">
|
||||||
|
<thead>
|
||||||
|
<tr>
|
||||||
|
<th>Plugin</th>
|
||||||
|
<th>Dataset</th>
|
||||||
|
<th>Accuracy</th>
|
||||||
|
<th>Precision_macro</th>
|
||||||
|
<th>Recall_macro</th>
|
||||||
|
<th>F1_macro</th>
|
||||||
|
<th>F1_weighted</th>
|
||||||
|
<th>F1_micro</th>
|
||||||
|
<th>F1</th>
|
||||||
|
</tr>
|
||||||
|
</thead>
|
||||||
|
<tbody>
|
||||||
|
</tbody>
|
||||||
|
</table>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
|
||||||
<a href="http://www.gsi.dit.upm.es" target="_blank"><img class="center-block" src="static/img/gsi.png"/> </a>
|
<a href="http://www.gsi.dit.upm.es" target="_blank"><img class="center-block" src="static/img/gsi.png"/> </a>
|
||||||
|
|
||||||
</div>
|
</div>
|
||||||
|
25
setup.py
25
setup.py
@ -1,23 +1,20 @@
|
|||||||
import pip
|
|
||||||
from setuptools import setup
|
from setuptools import setup
|
||||||
# parse_requirements() returns generator of pip.req.InstallRequirement objects
|
|
||||||
from pip.req import parse_requirements
|
|
||||||
|
|
||||||
with open('senpy/VERSION') as f:
|
with open('senpy/VERSION') as f:
|
||||||
__version__ = f.read().strip()
|
__version__ = f.read().strip()
|
||||||
assert __version__
|
assert __version__
|
||||||
|
|
||||||
try:
|
|
||||||
install_reqs = parse_requirements(
|
def parse_requirements(filename):
|
||||||
"requirements.txt", session=pip.download.PipSession())
|
""" load requirements from a pip requirements file """
|
||||||
test_reqs = parse_requirements(
|
with open(filename, 'r') as f:
|
||||||
"test-requirements.txt", session=pip.download.PipSession())
|
lineiter = list(line.strip() for line in f)
|
||||||
except AttributeError:
|
return [line for line in lineiter if line and not line.startswith("#")]
|
||||||
|
|
||||||
|
|
||||||
install_reqs = parse_requirements("requirements.txt")
|
install_reqs = parse_requirements("requirements.txt")
|
||||||
test_reqs = parse_requirements("test-requirements.txt")
|
test_reqs = parse_requirements("test-requirements.txt")
|
||||||
|
extra_reqs = parse_requirements("extra-requirements.txt")
|
||||||
install_reqs = [str(ir.req) for ir in install_reqs]
|
|
||||||
test_reqs = [str(ir.req) for ir in test_reqs]
|
|
||||||
|
|
||||||
|
|
||||||
setup(
|
setup(
|
||||||
@ -38,9 +35,7 @@ setup(
|
|||||||
tests_require=test_reqs,
|
tests_require=test_reqs,
|
||||||
setup_requires=['pytest-runner', ],
|
setup_requires=['pytest-runner', ],
|
||||||
extras_require={
|
extras_require={
|
||||||
'evaluation': [
|
'evaluation': extra_reqs
|
||||||
'gsitk'
|
|
||||||
]
|
|
||||||
},
|
},
|
||||||
include_package_data=True,
|
include_package_data=True,
|
||||||
entry_points={
|
entry_points={
|
||||||
|
@ -1,15 +1,18 @@
|
|||||||
#!/bin/env python
|
#!/bin/env python
|
||||||
|
|
||||||
import os
|
import os
|
||||||
|
import sys
|
||||||
import pickle
|
import pickle
|
||||||
import shutil
|
import shutil
|
||||||
import tempfile
|
import tempfile
|
||||||
|
|
||||||
from unittest import TestCase
|
from unittest import TestCase, skipIf
|
||||||
from senpy.models import Results, Entry, EmotionSet, Emotion, Plugins
|
from senpy.models import Results, Entry, EmotionSet, Emotion, Plugins
|
||||||
from senpy import plugins
|
from senpy import plugins
|
||||||
from senpy.plugins.conversion.emotion.centroids import CentroidConversion
|
from senpy.plugins.conversion.emotion.centroids import CentroidConversion
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
class ShelfDummyPlugin(plugins.SentimentPlugin, plugins.ShelfMixin):
|
class ShelfDummyPlugin(plugins.SentimentPlugin, plugins.ShelfMixin):
|
||||||
'''Dummy plugin for tests.'''
|
'''Dummy plugin for tests.'''
|
||||||
@ -212,7 +215,7 @@ class PluginsTest(TestCase):
|
|||||||
def input(self, entry, **kwargs):
|
def input(self, entry, **kwargs):
|
||||||
return entry.text
|
return entry.text
|
||||||
|
|
||||||
def predict(self, input):
|
def predict_one(self, input):
|
||||||
return 'SIGN' in input
|
return 'SIGN' in input
|
||||||
|
|
||||||
def output(self, output, entry, **kwargs):
|
def output(self, output, entry, **kwargs):
|
||||||
@ -242,7 +245,7 @@ class PluginsTest(TestCase):
|
|||||||
|
|
||||||
mappings = {'happy': 'marl:Positive', 'sad': 'marl:Negative'}
|
mappings = {'happy': 'marl:Positive', 'sad': 'marl:Negative'}
|
||||||
|
|
||||||
def predict(self, input, **kwargs):
|
def predict_one(self, input, **kwargs):
|
||||||
return 'happy' if ':)' in input else 'sad'
|
return 'happy' if ':)' in input else 'sad'
|
||||||
|
|
||||||
test_cases = [
|
test_cases = [
|
||||||
@ -309,6 +312,42 @@ class PluginsTest(TestCase):
|
|||||||
res = c._backwards_conversion(e)
|
res = c._backwards_conversion(e)
|
||||||
assert res["onyx:hasEmotionCategory"] == "c2"
|
assert res["onyx:hasEmotionCategory"] == "c2"
|
||||||
|
|
||||||
|
@skipIf(sys.version_info < (3, 0),
|
||||||
|
reason="requires Python3")
|
||||||
|
def test_evaluation(self):
|
||||||
|
testdata = []
|
||||||
|
for i in range(50):
|
||||||
|
testdata.append(["good", 1])
|
||||||
|
for i in range(50):
|
||||||
|
testdata.append(["bad", 0])
|
||||||
|
dataset = pd.DataFrame(testdata, columns=['text', 'polarity'])
|
||||||
|
|
||||||
|
class DummyPlugin(plugins.TextBox):
|
||||||
|
description = 'Plugin to test evaluation'
|
||||||
|
version = 0
|
||||||
|
|
||||||
|
def predict_one(self, input):
|
||||||
|
return 0
|
||||||
|
|
||||||
|
class SmartPlugin(plugins.TextBox):
|
||||||
|
description = 'Plugin to test evaluation'
|
||||||
|
version = 0
|
||||||
|
|
||||||
|
def predict_one(self, input):
|
||||||
|
if input == 'good':
|
||||||
|
return 1
|
||||||
|
return 0
|
||||||
|
|
||||||
|
dpipe = DummyPlugin()
|
||||||
|
results = plugins.evaluate(datasets={'testdata': dataset}, plugins=[dpipe], flatten=True)
|
||||||
|
dumb_metrics = results[0].metrics[0]
|
||||||
|
assert abs(dumb_metrics['accuracy'] - 0.5) < 0.01
|
||||||
|
|
||||||
|
spipe = SmartPlugin()
|
||||||
|
results = plugins.evaluate(datasets={'testdata': dataset}, plugins=[spipe], flatten=True)
|
||||||
|
smart_metrics = results[0].metrics[0]
|
||||||
|
assert abs(smart_metrics['accuracy'] - 1) < 0.01
|
||||||
|
|
||||||
|
|
||||||
def make_mini_test(fpath):
|
def make_mini_test(fpath):
|
||||||
def mini_test(self):
|
def mini_test(self):
|
||||||
|
Loading…
Reference in New Issue
Block a user