1
0
mirror of https://github.com/gsi-upm/senpy synced 2025-10-24 04:08:19 +00:00

Refactored conversion and postprocessing

This commit is contained in:
J. Fernando Sánchez
2018-11-22 17:27:43 +01:00
parent b48730137d
commit 41aa142ce0
13 changed files with 486 additions and 199 deletions

View File

View File

@@ -0,0 +1,158 @@
from senpy.plugins import EmotionConversionPlugin
from senpy.models import EmotionSet, Emotion, Error
import logging
logger = logging.getLogger(__name__)
class CentroidConversion(EmotionConversionPlugin):
'''
This plugin converts emotion annotations from a dimensional model to a
categorical one, and vice versa. The centroids used in the conversion
are configurable and appear in the semantic description of the plugin.
'''
def __init__(self, info, *args, **kwargs):
if 'centroids' not in info:
raise Error('Centroid conversion plugins should provide '
'the centroids in their senpy file')
if 'onyx:doesConversion' not in info:
if 'centroids_direction' not in info:
raise Error('Please, provide centroids direction')
cf, ct = info['centroids_direction']
info['onyx:doesConversion'] = [{
'onyx:conversionFrom': cf,
'onyx:conversionTo': ct
}, {
'onyx:conversionFrom': ct,
'onyx:conversionTo': cf
}]
if 'aliases' in info:
aliases = info['aliases']
ncentroids = {}
for k1, v1 in info['centroids'].items():
nv1 = {}
for k2, v2 in v1.items():
nv1[aliases.get(k2, k2)] = v2
ncentroids[aliases.get(k1, k1)] = nv1
info['centroids'] = ncentroids
super(CentroidConversion, self).__init__(info, *args, **kwargs)
self.dimensions = set()
for c in self.centroids.values():
self.dimensions.update(c.keys())
self.neutralPoints = self.get("neutralPoints", dict())
if not self.neutralPoints:
for i in self.dimensions:
self.neutralPoints[i] = self.get("neutralValue", 0)
def _forward_conversion(self, original):
"""Sum the VAD value of all categories found weighted by intensity.
Intensities are scaled by onyx:maxIntensityValue if it is present, else maxIntensityValue
is assumed to be one. Emotion entries that do not have onxy:hasEmotionIntensity specified
are assumed to have maxIntensityValue. Emotion entries that do not have
onyx:hasEmotionCategory specified are ignored."""
res = Emotion()
maxIntensity = float(original.get("onyx:maxIntensityValue", 1))
for e in original.onyx__hasEmotion:
category = e.get("onyx:hasEmotionCategory", None)
if not category:
continue
intensity = e.get("onyx:hasEmotionIntensity", maxIntensity) / maxIntensity
if not intensity:
continue
centroid = self.centroids.get(category, None)
if centroid:
for dim, value in centroid.items():
neutral = self.neutralPoints[dim]
if dim not in res:
res[dim] = 0
res[dim] += (value - neutral) * intensity + neutral
return res
def _backwards_conversion(self, original):
"""Find the closest category"""
centroids = self.centroids
neutralPoints = self.neutralPoints
dimensions = self.dimensions
def distance_k(centroid, original, k):
# k component of the distance between the value and a given centroid
return (centroid.get(k, neutralPoints[k]) - original.get(k, neutralPoints[k]))**2
def distance(centroid):
return sum(distance_k(centroid, original, k) for k in dimensions)
emotion = min(centroids, key=lambda x: distance(centroids[x]))
result = Emotion(onyx__hasEmotionCategory=emotion)
result.onyx__algorithmConfidence = distance(centroids[emotion])
return result
def convert(self, emotionSet, fromModel, toModel, params):
cf, ct = self.centroids_direction
logger.debug(
'{}\n{}\n{}\n{}'.format(emotionSet, fromModel, toModel, params))
e = EmotionSet()
if fromModel == cf and toModel == ct:
e.onyx__hasEmotion.append(self._forward_conversion(emotionSet))
elif fromModel == ct and toModel == cf:
for i in emotionSet.onyx__hasEmotion:
e.onyx__hasEmotion.append(self._backwards_conversion(i))
else:
raise Error('EMOTION MODEL NOT KNOWN')
yield e
def test(self, info=None):
if not info:
info = {
"name": "CentroidTest",
"description": "Centroid test",
"version": 0,
"centroids": {
"c1": {"V1": 0.5,
"V2": 0.5},
"c2": {"V1": -0.5,
"V2": 0.5},
"c3": {"V1": -0.5,
"V2": -0.5},
"c4": {"V1": 0.5,
"V2": -0.5}},
"aliases": {
"V1": "X-dimension",
"V2": "Y-dimension"
},
"centroids_direction": ["emoml:big6", "emoml:fsre-dimensions"]
}
c = CentroidConversion(info)
es1 = EmotionSet()
e1 = Emotion()
e1.onyx__hasEmotionCategory = "c1"
es1.onyx__hasEmotion.append(e1)
res = c._forward_conversion(es1)
assert res["X-dimension"] == 0.5
assert res["Y-dimension"] == 0.5
e2 = Emotion()
e2.onyx__hasEmotionCategory = "c2"
es1.onyx__hasEmotion.append(e2)
res = c._forward_conversion(es1)
assert res["X-dimension"] == 0
assert res["Y-dimension"] == 1
e = Emotion()
e["X-dimension"] = -0.2
e["Y-dimension"] = -0.3
res = c._backwards_conversion(e)
assert res["onyx:hasEmotionCategory"] == "c3"
e = Emotion()
e["X-dimension"] = -0.2
e["Y-dimension"] = 0.3
res = c._backwards_conversion(e)
assert res["onyx:hasEmotionCategory"] == "c2"

View File

@@ -0,0 +1,52 @@
---
name: Ekman2FSRE
module: senpy.plugins.postprocessing.emotion.centroids
description: Plugin to convert emotion sets from Ekman to VAD
version: 0.2
# No need to specify onyx:doesConversion because centroids.py adds it automatically from centroids_direction
neutralValue: 5.0
centroids:
anger:
A: 6.95
D: 5.1
V: 2.7
S: 5.0
disgust:
A: 5.3
D: 8.05
V: 2.7
S: 5.0
fear:
A: 6.5
D: 3.6
V: 3.2
S: 5.0
happiness:
A: 7.22
D: 6.28
V: 8.6
S: 5.0
sadness:
A: 5.21
D: 2.82
V: 2.21
S: 5.0
surprise:
A: 5.0
D: 5.0
V: 5.0
S: 10.0
centroids_direction:
- emoml:big6
- emoml:fsre-dimensions
aliases: # These are aliases for any key in the centroid, to avoid repeating a long name several times
A: emoml:fsre-dimensions_arousal
V: emoml:fsre-dimensions_valence
D: emoml:fsre-dimensions_potency
S: emoml:fsre-dimensions_unpredictability
anger: emoml:big6anger
disgust: emoml:big6disgust
fear: emoml:big6fear
happiness: emoml:big6happiness
sadness: emoml:big6sadness
surprise: emoml:big6surprise

View File

@@ -0,0 +1,40 @@
---
name: Ekman2PAD
module: senpy.plugins.postprocessing.emotion.centroids
description: Plugin to convert emotion sets from Ekman to VAD
version: 0.2
# No need to specify onyx:doesConversion because centroids.py adds it automatically from centroids_direction
neutralValue: 5.0
centroids:
anger:
A: 6.95
D: 5.1
V: 2.7
disgust:
A: 5.3
D: 8.05
V: 2.7
fear:
A: 6.5
D: 3.6
V: 3.2
happiness:
A: 7.22
D: 6.28
V: 8.6
sadness:
A: 5.21
D: 2.82
V: 2.21
centroids_direction:
- emoml:big6
- emoml:pad
aliases: # These are aliases for any key in the centroid, to avoid repeating a long name several times
A: emoml:pad-dimensions:arousal
V: emoml:pad-dimensions:pleasure
D: emoml:pad-dimensions:dominance
anger: emoml:big6anger
disgust: emoml:big6disgust
fear: emoml:big6fear
happiness: emoml:big6happiness
sadness: emoml:big6sadness

View File

@@ -0,0 +1,196 @@
from senpy import PostProcessing, easy_test
class MaxEmotion(PostProcessing):
'''Plugin to extract the emotion with highest value from an EmotionSet'''
author = '@dsuarezsouto'
version = '0.1'
def process_entry(self, entry, params):
if len(entry.emotions) < 1:
yield entry
return
set_emotions = entry.emotions[0]['onyx:hasEmotion']
# If there is only one emotion, do not modify it
if len(set_emotions) < 2:
yield entry
return
max_emotion = set_emotions[0]
# Extract max emotion from the set emotions (emotion with highest intensity)
for tmp_emotion in set_emotions:
if tmp_emotion['onyx:hasEmotionIntensity'] > max_emotion[
'onyx:hasEmotionIntensity']:
max_emotion = tmp_emotion
if max_emotion['onyx:hasEmotionIntensity'] == 0:
max_emotion['onyx:hasEmotionCategory'] = "neutral"
max_emotion['onyx:hasEmotionIntensity'] = 1.0
entry.emotions[0]['onyx:hasEmotion'] = [max_emotion]
entry.emotions[0]['prov:wasGeneratedBy'] = "maxSentiment"
yield entry
def check(self, request, plugins):
return 'maxemotion' in request.parameters and self not in plugins
# Test Cases:
# 1 Normal Situation.
# 2 Case to return a Neutral Emotion.
test_cases = [
{
"name":
"If there are several emotions within an emotion set, reduce it to one.",
"entry": {
"@type":
"entry",
"emotions": [
{
"@id":
"Emotions0",
"@type":
"emotionSet",
"onyx:hasEmotion": [
{
"@id": "_:Emotion_1538121033.74",
"@type": "emotion",
"onyx:hasEmotionCategory": "anger",
"onyx:hasEmotionIntensity": 0
},
{
"@id": "_:Emotion_1538121033.74",
"@type": "emotion",
"onyx:hasEmotionCategory": "joy",
"onyx:hasEmotionIntensity": 0.3333333333333333
},
{
"@id": "_:Emotion_1538121033.74",
"@type": "emotion",
"onyx:hasEmotionCategory": "negative-fear",
"onyx:hasEmotionIntensity": 0
},
{
"@id": "_:Emotion_1538121033.74",
"@type": "emotion",
"onyx:hasEmotionCategory": "sadness",
"onyx:hasEmotionIntensity": 0
},
{
"@id": "_:Emotion_1538121033.74",
"@type": "emotion",
"onyx:hasEmotionCategory": "disgust",
"onyx:hasEmotionIntensity": 0
}
]
}
],
"nif:isString":
"Test"
},
'expected': {
"@type":
"entry",
"emotions": [
{
"@id":
"Emotions0",
"@type":
"emotionSet",
"onyx:hasEmotion": [
{
"@id": "_:Emotion_1538121033.74",
"@type": "emotion",
"onyx:hasEmotionCategory": "joy",
"onyx:hasEmotionIntensity": 0.3333333333333333
}
],
"prov:wasGeneratedBy":
'maxSentiment'
}
],
"nif:isString":
"Test"
}
},
{
"name":
"If the maximum emotion has an intensity of 0, return a neutral emotion.",
"entry": {
"@type":
"entry",
"emotions": [{
"@id":
"Emotions0",
"@type":
"emotionSet",
"onyx:hasEmotion": [
{
"@id": "_:Emotion_1538121033.74",
"@type": "emotion",
"onyx:hasEmotionCategory": "anger",
"onyx:hasEmotionIntensity": 0
},
{
"@id": "_:Emotion_1538121033.74",
"@type": "emotion",
"onyx:hasEmotionCategory": "joy",
"onyx:hasEmotionIntensity": 0
},
{
"@id":
"_:Emotion_1538121033.74",
"@type":
"emotion",
"onyx:hasEmotionCategory":
"negative-fear",
"onyx:hasEmotionIntensity":
0
},
{
"@id": "_:Emotion_1538121033.74",
"@type": "emotion",
"onyx:hasEmotionCategory":
"sadness",
"onyx:hasEmotionIntensity": 0
},
{
"@id": "_:Emotion_1538121033.74",
"@type": "emotion",
"onyx:hasEmotionCategory":
"disgust",
"onyx:hasEmotionIntensity": 0
}]
}],
"nif:isString":
"Test"
},
'expected': {
"@type":
"entry",
"emotions": [{
"@id":
"Emotions0",
"@type":
"emotionSet",
"onyx:hasEmotion": [{
"@id": "_:Emotion_1538121033.74",
"@type": "emotion",
"onyx:hasEmotionCategory": "neutral",
"onyx:hasEmotionIntensity": 1
}],
"prov:wasGeneratedBy":
'maxSentiment'
}],
"nif:isString":
"Test"
}
}
]
if __name__ == '__main__':
easy_test()