mirror of
https://github.com/gsi-upm/senpy
synced 2024-11-22 00:02:28 +00:00
Add sklearn
* Add sklearn example * Fix test_case * Add SenpyClientUse docs a.k.a. The wise men edition
This commit is contained in:
parent
3e2b8baeb2
commit
1087692de2
106
docs/SenpyClientUse.rst
Normal file
106
docs/SenpyClientUse.rst
Normal file
@ -0,0 +1,106 @@
|
|||||||
|
|
||||||
|
Client
|
||||||
|
======
|
||||||
|
|
||||||
|
Demo Endpoint
|
||||||
|
-------------
|
||||||
|
|
||||||
|
Import Client and send a request
|
||||||
|
|
||||||
|
.. code:: python
|
||||||
|
|
||||||
|
from senpy.client import Client
|
||||||
|
|
||||||
|
c = Client('http://latest.senpy.cluster.gsi.dit.upm.es/api')
|
||||||
|
r = c.analyse('I like Pizza', algorithm='sentiment140')
|
||||||
|
|
||||||
|
Print response
|
||||||
|
|
||||||
|
.. code:: python
|
||||||
|
|
||||||
|
for entry in r.entries:
|
||||||
|
print('{} -> {}'.format(entry['text'], entry['sentiments'][0]['marl:hasPolarity']))
|
||||||
|
|
||||||
|
|
||||||
|
.. parsed-literal::
|
||||||
|
|
||||||
|
I like Pizza -> marl:Positive
|
||||||
|
|
||||||
|
|
||||||
|
Obtain a list of available plugins
|
||||||
|
|
||||||
|
.. code:: python
|
||||||
|
|
||||||
|
for plugin in c.request('/plugins')['plugins']:
|
||||||
|
print(plugin['name'])
|
||||||
|
|
||||||
|
|
||||||
|
.. parsed-literal::
|
||||||
|
|
||||||
|
emoRand
|
||||||
|
rand
|
||||||
|
sentiment140
|
||||||
|
|
||||||
|
|
||||||
|
Local Endpoint
|
||||||
|
--------------
|
||||||
|
|
||||||
|
Run a docker container with Senpy image and default plugins
|
||||||
|
|
||||||
|
.. code::
|
||||||
|
|
||||||
|
docker run -ti --name 'SenpyEndpoint' -d -p 5000:5000 gsiupm/senpy:0.8.6 --host 0.0.0.0 --default-plugins
|
||||||
|
|
||||||
|
|
||||||
|
.. parsed-literal::
|
||||||
|
|
||||||
|
a0157cd98057072388bfebeed78a830da7cf0a796f4f1a3fd9188f9f2e5fe562
|
||||||
|
|
||||||
|
|
||||||
|
Import client and send a request to localhost
|
||||||
|
|
||||||
|
.. code:: python
|
||||||
|
|
||||||
|
c_local = Client('http://127.0.0.1:5000/api')
|
||||||
|
r = c_local.analyse('Hello world', algorithm='sentiment140')
|
||||||
|
|
||||||
|
Print response
|
||||||
|
|
||||||
|
.. code:: python
|
||||||
|
|
||||||
|
for entry in r.entries:
|
||||||
|
print('{} -> {}'.format(entry['text'], entry['sentiments'][0]['marl:hasPolarity']))
|
||||||
|
|
||||||
|
|
||||||
|
.. parsed-literal::
|
||||||
|
|
||||||
|
Hello world -> marl:Neutral
|
||||||
|
|
||||||
|
|
||||||
|
Obtain a list of available plugins deployed locally
|
||||||
|
|
||||||
|
.. code:: python
|
||||||
|
|
||||||
|
c_local.plugins().keys()
|
||||||
|
|
||||||
|
|
||||||
|
.. parsed-literal::
|
||||||
|
|
||||||
|
rand
|
||||||
|
sentiment140
|
||||||
|
emoRand
|
||||||
|
|
||||||
|
|
||||||
|
Stop the docker container
|
||||||
|
|
||||||
|
.. code:: python
|
||||||
|
|
||||||
|
!docker stop SenpyEndpoint
|
||||||
|
!docker rm SenpyEndpoint
|
||||||
|
|
||||||
|
|
||||||
|
.. parsed-literal::
|
||||||
|
|
||||||
|
SenpyEndpoint
|
||||||
|
SenpyEndpoint
|
||||||
|
|
@ -22,7 +22,7 @@ class DummyRequired(AnalysisPlugin):
|
|||||||
'entry': {
|
'entry': {
|
||||||
'nif:isString': 'Hello',
|
'nif:isString': 'Hello',
|
||||||
},
|
},
|
||||||
'expected': None
|
'should_fail': True
|
||||||
}, {
|
}, {
|
||||||
'entry': {
|
'entry': {
|
||||||
'nif:isString': 'Hello',
|
'nif:isString': 'Hello',
|
||||||
|
33
example-plugins/sklearn/mydata.py
Normal file
33
example-plugins/sklearn/mydata.py
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
'''
|
||||||
|
Create a dummy dataset.
|
||||||
|
Messages with a happy emoticon are labelled positive
|
||||||
|
Messages with a sad emoticon are labelled negative
|
||||||
|
'''
|
||||||
|
import random
|
||||||
|
|
||||||
|
dataset = []
|
||||||
|
|
||||||
|
vocabulary = ['hello', 'world', 'senpy', 'cool', 'goodbye', 'random', 'text']
|
||||||
|
|
||||||
|
emojimap = {
|
||||||
|
1: [':)', ],
|
||||||
|
-1: [':(', ]
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
for tag, values in emojimap.items():
|
||||||
|
for i in range(1000):
|
||||||
|
msg = ''
|
||||||
|
for j in range(3):
|
||||||
|
msg += random.choice(vocabulary)
|
||||||
|
msg += " "
|
||||||
|
msg += random.choice(values)
|
||||||
|
dataset.append([msg, tag])
|
||||||
|
|
||||||
|
|
||||||
|
text = []
|
||||||
|
labels = []
|
||||||
|
|
||||||
|
for i in dataset:
|
||||||
|
text.append(i[0])
|
||||||
|
labels.append(i[1])
|
30
example-plugins/sklearn/mypipeline.py
Normal file
30
example-plugins/sklearn/mypipeline.py
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
from sklearn.pipeline import Pipeline
|
||||||
|
from sklearn.feature_extraction.text import CountVectorizer
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
|
||||||
|
from mydata import text, labels
|
||||||
|
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(text, labels, test_size=0.12, random_state=42)
|
||||||
|
|
||||||
|
from sklearn.naive_bayes import MultinomialNB
|
||||||
|
|
||||||
|
|
||||||
|
count_vec = CountVectorizer(tokenizer=lambda x: x.split())
|
||||||
|
clf3 = MultinomialNB()
|
||||||
|
pipeline = Pipeline([('cv', count_vec),
|
||||||
|
('clf', clf3)])
|
||||||
|
|
||||||
|
pipeline.fit(X_train, y_train)
|
||||||
|
print('Feature names: {}'.format(count_vec.get_feature_names()))
|
||||||
|
print('Class count: {}'.format(clf3.class_count_))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
print('--Results--')
|
||||||
|
tests = [
|
||||||
|
(['The sentiment for senpy should be positive :)', ], 1),
|
||||||
|
(['The sentiment for anything else should be negative :()', ], -1)
|
||||||
|
]
|
||||||
|
for features, expected in tests:
|
||||||
|
result = pipeline.predict(features)
|
||||||
|
print('Input: {}\nExpected: {}\nGot: {}'.format(features[0], expected, result))
|
37
example-plugins/sklearn/pipeline_plugin.py
Normal file
37
example-plugins/sklearn/pipeline_plugin.py
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
from senpy import SentimentBox, MappingMixin, easy_test
|
||||||
|
|
||||||
|
from mypipeline import pipeline
|
||||||
|
|
||||||
|
|
||||||
|
class PipelineSentiment(MappingMixin, SentimentBox):
|
||||||
|
'''
|
||||||
|
This is a pipeline plugin that wraps a classifier defined in another module
|
||||||
|
(mypipeline).
|
||||||
|
'''
|
||||||
|
author = '@balkian'
|
||||||
|
version = 0.1
|
||||||
|
maxPolarityValue = 1
|
||||||
|
minPolarityValue = -1
|
||||||
|
|
||||||
|
mappings = {
|
||||||
|
1: 'marl:Positive',
|
||||||
|
-1: 'marl:Negative'
|
||||||
|
}
|
||||||
|
|
||||||
|
def box(self, input, *args, **kwargs):
|
||||||
|
return pipeline.predict([input, ])[0]
|
||||||
|
|
||||||
|
test_cases = [
|
||||||
|
{
|
||||||
|
'input': 'The sentiment for senpy should be positive :)',
|
||||||
|
'polarity': 'marl:Positive'
|
||||||
|
},
|
||||||
|
{
|
||||||
|
'input': 'The sentiment for senpy should be negative :(',
|
||||||
|
'polarity': 'marl:Negative'
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
easy_test()
|
@ -114,6 +114,7 @@ class Plugin(with_metaclass(PluginMeta, models.Plugin)):
|
|||||||
for case in test_cases:
|
for case in test_cases:
|
||||||
try:
|
try:
|
||||||
self.test_case(case)
|
self.test_case(case)
|
||||||
|
logger.debug('Test case passed:\n{}'.format(pprint.pformat(case)))
|
||||||
except Exception as ex:
|
except Exception as ex:
|
||||||
logger.warn('Test case failed:\n{}'.format(pprint.pformat(case)))
|
logger.warn('Test case failed:\n{}'.format(pprint.pformat(case)))
|
||||||
raise
|
raise
|
||||||
@ -121,7 +122,7 @@ class Plugin(with_metaclass(PluginMeta, models.Plugin)):
|
|||||||
def test_case(self, case):
|
def test_case(self, case):
|
||||||
entry = models.Entry(case['entry'])
|
entry = models.Entry(case['entry'])
|
||||||
given_parameters = case.get('params', case.get('parameters', {}))
|
given_parameters = case.get('params', case.get('parameters', {}))
|
||||||
expected = case['expected']
|
expected = case.get('expected', None)
|
||||||
should_fail = case.get('should_fail', False)
|
should_fail = case.get('should_fail', False)
|
||||||
try:
|
try:
|
||||||
params = api.parse_params(given_parameters, self.extra_params)
|
params = api.parse_params(given_parameters, self.extra_params)
|
||||||
@ -135,6 +136,7 @@ class Plugin(with_metaclass(PluginMeta, models.Plugin)):
|
|||||||
except models.Error:
|
except models.Error:
|
||||||
if should_fail:
|
if should_fail:
|
||||||
return
|
return
|
||||||
|
raise
|
||||||
assert not should_fail
|
assert not should_fail
|
||||||
|
|
||||||
def open(self, fpath, *args, **kwargs):
|
def open(self, fpath, *args, **kwargs):
|
||||||
@ -213,8 +215,8 @@ class SentimentPlugin(Analysis, models.SentimentPlugin):
|
|||||||
maxPolarityValue = 1
|
maxPolarityValue = 1
|
||||||
|
|
||||||
def test_case(self, case):
|
def test_case(self, case):
|
||||||
expected = case.get('expected', {})
|
|
||||||
if 'polarity' in case:
|
if 'polarity' in case:
|
||||||
|
expected = case.get('expected', {})
|
||||||
s = models.Sentiment(_auto_id=False)
|
s = models.Sentiment(_auto_id=False)
|
||||||
s.marl__hasPolarity = case['polarity']
|
s.marl__hasPolarity = case['polarity']
|
||||||
if 'sentiments' not in expected:
|
if 'sentiments' not in expected:
|
||||||
@ -320,6 +322,14 @@ class EmotionBox(TextBox, EmotionPlugin):
|
|||||||
|
|
||||||
class MappingMixin(object):
|
class MappingMixin(object):
|
||||||
|
|
||||||
|
@property
|
||||||
|
def mappings(self):
|
||||||
|
return self._mappings
|
||||||
|
|
||||||
|
@mappings.setter
|
||||||
|
def mappings(self, value):
|
||||||
|
self._mappings = value
|
||||||
|
|
||||||
def output(self, output, entry, params):
|
def output(self, output, entry, params):
|
||||||
output = self.mappings.get(output,
|
output = self.mappings.get(output,
|
||||||
self.mappings.get('default', output))
|
self.mappings.get('default', output))
|
||||||
|
@ -76,6 +76,7 @@ def easy_test(plugin_list=None):
|
|||||||
plugin_list = plugins.from_module(__main__)
|
plugin_list = plugins.from_module(__main__)
|
||||||
for plug in plugin_list:
|
for plug in plugin_list:
|
||||||
plug.test()
|
plug.test()
|
||||||
|
logger.info('The tests for {} passed!'.format(plug.name))
|
||||||
logger.info('All tests passed!')
|
logger.info('All tests passed!')
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user