1
0
mirror of https://github.com/gsi-upm/senpy synced 2024-11-24 17:12:29 +00:00
senpy/docs/plugins.rst

163 lines
6.2 KiB
ReStructuredText
Raw Normal View History

Developing new plugins
----------------------
2016-03-31 09:56:32 +00:00
Each plugin represents a different analysis process.There are two types of files that are needed by senpy for loading a plugin:
2015-11-05 18:11:35 +00:00
Plugins Interface
=======
2016-03-31 09:56:32 +00:00
- Definition file, has the ".senpy" extension.
- Code file, is a python file.
Plugins Definitions
===================
The definition file can be written in JSON or YAML, where the data representation consists on attribute-value pairs.
The principal attributes are:
* name: plugin name used in senpy to call the plugin.
* module: indicates the module that will be loaded
.. code:: python
{
"name" : "senpyPlugin",
"module" : "{python code file}"
}
.. code:: python
name: senpyPlugin
module: {python code file}
Plugins Code
2015-11-05 18:11:35 +00:00
=================
The basic methods in a plugin are:
* __init__
* activate: used to load memory-hungry resources
* deactivate: used to free up resources
2015-12-17 18:48:28 +00:00
* analyse: called in every user requests. It takes in the parameters supplied by a user and should return a senpy Response.
2015-11-05 18:11:35 +00:00
Plugins are loaded asynchronously, so don't worry if the activate method takes too long. The plugin will be marked as activated once it is finished executing the method.
F.A.Q.
======
2015-11-05 18:20:13 +00:00
If I'm using a classifier, where should I train it?
???????????????????????????????????????????????????
2015-11-05 18:11:35 +00:00
Training a classifier can be time time consuming. To avoid running the training unnecessarily, you can use ShelfMixin to store the classifier. For instance:
.. code:: python
from senpy.plugins import ShelfMixin, SenpyPlugin
class MyPlugin(ShelfMixin, SenpyPlugin):
def train(self):
''' Code to train the classifier
'''
# Here goes the code
# ...
return classifier
def activate(self):
if 'classifier' not in self.sh:
classifier = self.train()
self.sh['classifier'] = classifier
self.classifier = self.sh['classifier']
def deactivate(self):
self.close()
You can speficy a 'shelf_file' in your .senpy file. By default the ShelfMixin creates a file based on the plugin name and stores it in that plugin's folder.
2016-03-31 09:56:32 +00:00
I want to implement my service as a plugin, How i can do it?
????????????????????????????????????????????????????????????
This example ilustrate how to implement the Sentiment140 service as a plugin in senpy
.. code:: python
class Sentiment140Plugin(SentimentPlugin):
def analyse(self, **params):
lang = params.get("language", "auto")
res = requests.post("http://www.sentiment140.com/api/bulkClassifyJson",
json.dumps({"language": lang,
"data": [{"text": params["input"]}]
}
)
)
p = params.get("prefix", None)
response = Results(prefix=p)
polarity_value = self.maxPolarityValue*int(res.json()["data"][0]
["polarity"]) * 0.25
polarity = "marl:Neutral"
neutral_value = self.maxPolarityValue / 2.0
if polarity_value > neutral_value:
polarity = "marl:Positive"
elif polarity_value < neutral_value:
polarity = "marl:Negative"
entry = Entry(id="Entry0",
nif__isString=params["input"])
sentiment = Sentiment(id="Sentiment0",
prefix=p,
marl__hasPolarity=polarity,
marl__polarityValue=polarity_value)
sentiment.prov__wasGeneratedBy = self.id
entry.sentiments = []
entry.sentiments.append(sentiment)
entry.language = lang
response.entries.append(entry)
return response
Where can I define extra parameters to be introduced in the request to my plugin?
?????????????????????????????????????????????????????????????????????????????????
You can add these parameters in the definition file under the attribute "extra_params" : "{param_name}". The name of the parameter has new attributes-value pairs. The basic attributes are:
* aliases: the different names which can be used in the request to use the parameter.
* required: this option is a boolean and indicates if the parameters is binding in operation plugin.
* options: the different values of the paremeter.
* default: the default value of the parameter, this is useful in case the paremeter is required and you want to have a default value.
.. code:: python
"extra_params": {
"language": {
"aliases": ["language", "l"],
"required": true,
"options": ["es","en"],
"default": "es"
}
}
This example shows how to introduce a parameter associated with language.
The extraction of this paremeter is used in the analyse method of the Plugin interface.
.. code:: python
lang = params.get("language")
Where can I set up variables for using them in my plugin?
?????????????????????????????????????????????????????????
You can add these variables in the definition file with the extracture of attribute-value pair.
Once you have added your variables, the next step is to extract them into the plugin. The plugin's __init__ method has a parameter called `info` where you can extract the values of the variables. This info parameter has the structure of a python dictionary.
Can I activate a DEBUG mode for my plugin?
???????????????????????????????????????????
You can activate the DEBUG mode by the command-line tool using the option -d.
.. code:: bash
python -m senpy -d
2015-11-05 18:11:35 +00:00
Where can I find more code examples?
????????????????????????????????????
See: `<http://github.com/gsi-upm/senpy-plugins-community>`_.