mirror of
https://github.com/gsi-upm/senpy
synced 2024-11-01 07:41:42 +00:00
31 lines
1023 B
Python
31 lines
1023 B
Python
|
from sklearn.pipeline import Pipeline
|
||
|
from sklearn.feature_extraction.text import CountVectorizer
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
|
||
|
from mydata import text, labels
|
||
|
|
||
|
X_train, X_test, y_train, y_test = train_test_split(text, labels, test_size=0.12, random_state=42)
|
||
|
|
||
|
from sklearn.naive_bayes import MultinomialNB
|
||
|
|
||
|
|
||
|
count_vec = CountVectorizer(tokenizer=lambda x: x.split())
|
||
|
clf3 = MultinomialNB()
|
||
|
pipeline = Pipeline([('cv', count_vec),
|
||
|
('clf', clf3)])
|
||
|
|
||
|
pipeline.fit(X_train, y_train)
|
||
|
print('Feature names: {}'.format(count_vec.get_feature_names()))
|
||
|
print('Class count: {}'.format(clf3.class_count_))
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
print('--Results--')
|
||
|
tests = [
|
||
|
(['The sentiment for senpy should be positive :)', ], 1),
|
||
|
(['The sentiment for anything else should be negative :()', ], -1)
|
||
|
]
|
||
|
for features, expected in tests:
|
||
|
result = pipeline.predict(features)
|
||
|
print('Input: {}\nExpected: {}\nGot: {}'.format(features[0], expected, result))
|