1
0
mirror of https://github.com/gsi-upm/senpy synced 2024-11-15 04:42:30 +00:00
senpy/emotion-anew/emotion-anew.py

228 lines
9.0 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
import re
import nltk
import csv
import sys
import os
import unicodedata
import string
import xml.etree.ElementTree as ET
import math
from sklearn.svm import LinearSVC
from sklearn.feature_extraction import DictVectorizer
from nltk import bigrams
from nltk import trigrams
from nltk.corpus import stopwords
from pattern.en import parse as parse_en
from pattern.es import parse as parse_es
2019-04-04 10:56:46 +00:00
from senpy.plugins import EmotionPlugin, SenpyPlugin
from senpy.models import Results, EmotionSet, Entry, Emotion
2019-04-04 10:56:46 +00:00
class ANEW(EmotionPlugin):
2018-06-14 17:38:08 +00:00
description = "This plugin consists on an emotion classifier using ANEW lexicon dictionary to calculate VAD (valence-arousal-dominance) of the sentence and determinate which emotion is closer to this value. Each emotion has a centroid, calculated according to this article: http://www.aclweb.org/anthology/W10-0208. The plugin is going to look for the words in the sentence that appear in the ANEW dictionary and calculate the average VAD score for the sentence. Once this score is calculated, it is going to seek the emotion that is closest to this value."
author = "@icorcuera"
2019-07-10 11:09:48 +00:00
version = "0.5.2"
2018-06-14 17:38:08 +00:00
name = "emotion-anew"
extra_params = {
"language": {
2019-04-04 10:56:46 +00:00
"description": "language of the input",
2018-06-14 17:38:08 +00:00
"aliases": ["language", "l"],
"required": True,
"options": ["es","en"],
"default": "en"
}
}
anew_path_es = "Dictionary/Redondo(2007).csv"
anew_path_en = "Dictionary/ANEW2010All.txt"
2019-07-10 11:07:55 +00:00
onyx__usesEmotionModel = "emoml:pad-dimensions"
2018-06-14 17:38:08 +00:00
nltk_resources = ['stopwords']
def activate(self, *args, **kwargs):
self._stopwords = stopwords.words('english')
2018-06-14 17:38:08 +00:00
dictionary={}
dictionary['es'] = {}
2019-01-09 18:29:24 +00:00
with self.open(self.anew_path_es,'r') as tabfile:
2018-06-14 17:38:08 +00:00
reader = csv.reader(tabfile, delimiter='\t')
for row in reader:
dictionary['es'][row[2]]={}
dictionary['es'][row[2]]['V']=row[3]
dictionary['es'][row[2]]['A']=row[5]
dictionary['es'][row[2]]['D']=row[7]
dictionary['en'] = {}
2019-01-09 18:29:24 +00:00
with self.open(self.anew_path_en,'r') as tabfile:
2018-06-14 17:38:08 +00:00
reader = csv.reader(tabfile, delimiter='\t')
for row in reader:
dictionary['en'][row[0]]={}
dictionary['en'][row[0]]['V']=row[2]
dictionary['en'][row[0]]['A']=row[4]
dictionary['en'][row[0]]['D']=row[6]
self._dictionary = dictionary
def _my_preprocessor(self, text):
regHttp = re.compile('(http://)[a-zA-Z0-9]*.[a-zA-Z0-9/]*(.[a-zA-Z0-9]*)?')
regHttps = re.compile('(https://)[a-zA-Z0-9]*.[a-zA-Z0-9/]*(.[a-zA-Z0-9]*)?')
regAt = re.compile('@([a-zA-Z0-9]*[*_/&%#@$]*)*[a-zA-Z0-9]*')
text = re.sub(regHttp, '', text)
text = re.sub(regAt, '', text)
text = re.sub('RT : ', '', text)
text = re.sub(regHttps, '', text)
text = re.sub('[0-9]', '', text)
text = self._delete_punctuation(text)
return text
def _delete_punctuation(self, text):
exclude = set(string.punctuation)
s = ''.join(ch for ch in text if ch not in exclude)
return s
def _extract_ngrams(self, text, lang):
unigrams_lemmas = []
unigrams_words = []
pos_tagged = []
if lang == 'es':
2019-04-04 10:56:46 +00:00
sentences = list(parse_es(text, lemmata=True).split())
else:
2019-04-04 10:56:46 +00:00
sentences = list(parse_en(text, lemmata=True).split())
for sentence in sentences:
for token in sentence:
if token[0].lower() not in self._stopwords:
unigrams_words.append(token[0].lower())
2018-06-14 17:38:08 +00:00
unigrams_lemmas.append(token[4])
pos_tagged.append(token[1])
return unigrams_lemmas,unigrams_words,pos_tagged
def _find_ngrams(self, input_list, n):
return zip(*[input_list[i:] for i in range(n)])
def _extract_features(self, tweet,dictionary,lang):
feature_set={}
ngrams_lemmas,ngrams_words,pos_tagged = self._extract_ngrams(tweet,lang)
pos_tags={'NN':'NN', 'NNS':'NN', 'JJ':'JJ', 'JJR':'JJ', 'JJS':'JJ', 'RB':'RB', 'RBR':'RB',
'RBS':'RB', 'VB':'VB', 'VBD':'VB', 'VGB':'VB', 'VBN':'VB', 'VBP':'VB', 'VBZ':'VB'}
totalVAD=[0,0,0]
matches=0
for word in range(len(ngrams_lemmas)):
VAD=[]
if ngrams_lemmas[word] in dictionary:
matches+=1
totalVAD = [totalVAD[0]+float(dictionary[ngrams_lemmas[word]]['V']),
totalVAD[1]+float(dictionary[ngrams_lemmas[word]]['A']),
totalVAD[2]+float(dictionary[ngrams_lemmas[word]]['D'])]
elif ngrams_words[word] in dictionary:
matches+=1
totalVAD = [totalVAD[0]+float(dictionary[ngrams_words[word]]['V']),
totalVAD[1]+float(dictionary[ngrams_words[word]]['A']),
totalVAD[2]+float(dictionary[ngrams_words[word]]['D'])]
if matches==0:
emotion='neutral'
else:
totalVAD=[totalVAD[0]/matches,totalVAD[1]/matches,totalVAD[2]/matches]
2019-04-04 10:56:46 +00:00
feature_set['V'] = totalVAD[0]
feature_set['A'] = totalVAD[1]
feature_set['D'] = totalVAD[2]
return feature_set
2019-04-04 10:56:46 +00:00
def analyse_entry(self, entry, activity):
params = activity.params
2018-06-14 17:38:08 +00:00
text_input = entry.text
2018-06-14 17:38:08 +00:00
text = self._my_preprocessor(text_input)
dictionary = self._dictionary[params['language']]
2018-06-14 17:38:08 +00:00
feature_set=self._extract_features(text, dictionary, params['language'])
emotions = EmotionSet()
emotions.id = "Emotions0"
emotion1 = Emotion(id="Emotion0")
2019-07-10 11:07:55 +00:00
emotion1["emoml:pad-dimensions_pleasure"] = feature_set['V']
emotion1["emoml:pad-dimensions_arousal"] = feature_set['A']
emotion1["emoml:pad-dimensions_dominance"] = feature_set['D']
2019-04-04 10:56:46 +00:00
emotion1.prov(activity)
emotions.prov(activity)
2018-06-14 17:38:08 +00:00
emotions.onyx__hasEmotion.append(emotion1)
2018-06-14 17:38:08 +00:00
entry.emotions = [emotions, ]
yield entry
2018-06-14 17:38:08 +00:00
ontology = "http://gsi.dit.upm.es/ontologies/wnaffect/ns#"
test_cases = [
{
2019-04-04 10:56:46 +00:00
'name': 'anger with VAD=(2.12, 6.95, 5.05)',
2018-06-14 17:38:08 +00:00
'input': 'I hate you',
'expected': {
2019-04-04 10:56:46 +00:00
'onyx:hasEmotionSet': [{
2018-06-14 17:38:08 +00:00
'onyx:hasEmotion': [{
2019-04-04 10:56:46 +00:00
"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#arousal": 6.95,
"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#dominance": 5.05,
"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#valence": 2.12,
2018-06-14 17:38:08 +00:00
}]
}]
}
}, {
'input': 'i am sad',
'expected': {
2019-04-04 10:56:46 +00:00
'onyx:hasEmotionSet': [{
2018-06-14 17:38:08 +00:00
'onyx:hasEmotion': [{
2019-04-04 10:56:46 +00:00
"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#arousal": 4.13,
"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#dominance": 3.45,
"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#valence": 1.61,
2018-06-14 17:38:08 +00:00
}]
}]
}
}, {
2019-04-04 10:56:46 +00:00
'name': 'joy',
2018-06-14 17:38:08 +00:00
'input': 'i am happy with my marks',
'expected': {
2019-04-04 10:56:46 +00:00
'onyx:hasEmotionSet': [{
2018-06-14 17:38:08 +00:00
'onyx:hasEmotion': [{
2019-04-04 10:56:46 +00:00
"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#arousal": 6.49,
"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#dominance": 6.63,
"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#valence": 8.21,
2018-06-14 17:38:08 +00:00
}]
}]
}
}, {
2019-04-04 10:56:46 +00:00
'name': 'negative-feat',
2018-06-14 17:38:08 +00:00
'input': 'This movie is scary',
'expected': {
2019-04-04 10:56:46 +00:00
'onyx:hasEmotionSet': [{
2018-06-14 17:38:08 +00:00
'onyx:hasEmotion': [{
2019-04-04 10:56:46 +00:00
"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#arousal": 5.8100000000000005,
"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#dominance": 4.33,
"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#valence": 5.050000000000001,
2018-06-14 17:38:08 +00:00
}]
}]
}
}, {
2019-04-04 10:56:46 +00:00
'name': 'negative-fear',
2018-06-14 17:38:08 +00:00
'input': 'this cake is disgusting' ,
'expected': {
2019-04-04 10:56:46 +00:00
'onyx:hasEmotionSet': [{
2018-06-14 17:38:08 +00:00
'onyx:hasEmotion': [{
2019-04-04 10:56:46 +00:00
"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#arousal": 5.09,
"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#dominance": 4.4,
"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#valence": 5.109999999999999,
2018-06-14 17:38:08 +00:00
}]
}]
}
}
]